Data Strategy: Steigern smarte Erkenntnisse den Business Impact?

Abbilding 2: Loth-Modell des Reifegrads von Advanced Analytics
Abbilding 2: Loth-Modell des Reifegrads von Advanced Analytics

Die voranschreitende digitale Transformation liefert Daten über nahezu jede Facette unseres Tuns. Jeder Besuch eine Webseite, jeder Klick, jede Suchanfrage und jeder Einkauf wird protokolliert und entweder mit unserer virtuellen Identität (wenn wir angemeldet sind) verknüpft, oder in einem System gespeichert, dass unsere Sitzung per Cookie oder digitalem Fingerabdruck verarbeitet.

Sind diese Daten erst einmal erhoben, werden sie für gewöhnlich in Silos der einzelnen Funktionen (vertikales Silo), Abteilungen (horizontales Silo), oder sogar in individuellen Projektsilos abgelegt. Um aus diesen Daten eine wertvolle und nützliche Ressource zu machen, müssen wir diese Silos aufbrechen. Dem stehen allerdings oft Fragen zur Inhaberschaft, Regularien und Governance im Weg.

Das Sammeln von Daten allein generiert aber keinen Mehrwert. Der tatsächliche Business Impact hängt davon ab, wie “smart” die gewonnen Erkenntnisse sind. Und das wiederum wird von der Vollständigkeit der Advanced-Analytics-Lösung (siehe Abbildung 2) und der Komplexität der eingesetzten Modelle bestimmt. Präskriptive und Semantische Analysen sind unter Umständen nur sehr schwer umzusetzen, insbesondere wenn es zunächst gilt, semi-strukturierte Daten – wie etwa Social Media-Streams – zu klassifizieren.

Vergessen Sie also über die Umsetzung komplexer Modelle nicht, die leichte Beute einzusacken: lassen Sie all Ihre quantitativen Informationen einfließen (beispielsweise Umsatzdaten), um Ihre diagnostischen Möglichkeiten zu skalieren.

Für die meisten Entscheidungsträger besteht die Herausforderung nicht in einem Mangel an Daten oder Datenquellen, sondern dass die zur Verfügung stehenden Datenquellen oftmals unterschiedliche Ergebnisse liefern oder schlichtweg nicht geeignet sind, die jeweils anstehende Entscheidung sinnvoll zu informieren.

Leider wird die Rolle der IT dabei oft unterschätzt. Die größte Herausforderung für Entscheidungsträger im Analytics-Zeitalter ist die eingefahrene Sichtweise, dass Unternehmen ihrer eigenen Datenbasis bestehend aus Interaktionen mit potentiellen Kunden, Kunden, Lieferanten und Partnern weniger vertrauen können, als externen Erkenntnisquellen.

Dieser Beitrag ist der zweite Teil der Datenstrategie-Serie:

Teil 1: Die Notwendigkeit einer modernen Datenstrategie im Zuge der digitalen Transformation
Teil 2: Steigern smarte Erkenntnisse den Business Impact?
Teil 3: 10 BI & Analytics Trends, die in keiner Datenstrategie fehlen dürfen
Teil 4: Wie unterstützen Analysen Ihre Entscheidungsfindung?
Teil 5: Erstickt Innovation zwischen Berichtswesen und Data Discovery?