Data Operations: Wann sollten Sie Datenextrakte und wann Live-Verbindungen verwenden

#dataops: Folgen Sie der Diskussion auf Twitter
#dataops: Folgen Sie der Diskussion auf Twitter

Nachdem Sie Ihre Daten für die Analyse optimal vorbereitet haben, stellt sich die Frage auf welche Weise Sie Ihre Daten bereithalten wollen, damit Sie schnell erste Erkenntnisse erhalten.

Tableau bietet Ihnen für die meisten Datenquellen die Möglichkeit, zwischen einer Live-Verbindung, also einer direkten Verbindung zur Datenbank, und einem Datenextrakt, also einem Abzug der Daten zu wählen. Wie Abbildung 1.1 zeigt, können Sie einfach zwischen beiden Verbindungstypen wechseln.

Auswahlknöpfe, um zwischen Live-Verbindung und Datenextrakt zu wechseln
Abbildung 1.1: Auswahlknöpfe, um zwischen Live-Verbindung und Datenextrakt zu wechseln

Live-Verbindungen ermöglichen Ihnen die Arbeit mit den Daten, wie sie zum momentanen Zeitpunkt auf der Datenbank oder der Datei vorliegen. Wenn Sie Daten extrahieren, importieren Sie einige oder alle Daten in die Data Engine von Tableau. Dies gilt sowohl für Tableau Desktop als auch für Tableau Server. Welche Verbindungsmethode Sie bevorzugen sollten, hängt von Ihrer Situation und dem Anwendungsfall, Ihren Anforderungen sowie von der Verfügbarkeit der Datenbank und der Netzwerkbeschaffenheit ab.

Immer aktuell mit der Live-Verbindung

Durch die direkte Verbindung mit Ihrer Datenquelle visualisieren Sie immer die aktuellsten Daten, die Ihnen die Datenbank zur Verfügung stellt. Wenn Ihre Datenbank in Echtzeit aktualisiert wird, müssen Sie die Tableau-Visualisierung nur über die Funktionstaste F5 aktualisieren oder indem Sie mit der rechten Maustaste auf die Datenquelle klicken und die Option Aktualisieren auswählen.

Wenn Sie eine Verbindung zu großen Datenmengen herstellen, die Visualisierung sehr viele Details enthält oder Ihre Daten in einer leistungsstarken Datenbank mit entsprechend ausgestatteter Hardware gespeichert sind, können Sie mit einer direkten Verbindung eine schnellere Antwortzeit erzielen.

Die Auswahl einer direkten Verbindung schließt nicht die Möglichkeit aus, die Daten später zu extrahieren. Andersherum können Sie auch wieder von einem Extrakt zu einer Live-Verbindung wechseln, indem Sie mit der rechten Maustaste auf die Datenquelle klicken und die Option Extrakt verwenden deaktivieren.

Unabhängig mit einem Datenextrakt

Datenextrakte haben naturgemäß nicht den Vorteil, dass sie in Echtzeit aktualisiert werden, wie es bei einer Live-Verbindung der Fall ist. Die Verwendung der Data Engine von Tableau bietet jedoch eine Reihe von Vorteilen:

Leistungsverbesserung bei langsamen Datenquellen:

Vielleicht ist Ihre Datenbank stark mit Anfragen belastet oder bereits mit transaktionalen Operationen beschäftigt. Mithilfe der Data Engine können Sie Ihre Datenbank entlasten und die Datenhaltung von Tableau übernehmen lassen. Extrakte können Sie am besten außerhalb der Stoßzeiten aktualisieren. Tableau Server kann Extrakte auch zu festgelegten Zeitpunkten aktualisieren, zum Beispiel nachts um 3 Uhr.

Inkrementelles Extrahieren:

Durch das inkrementelle Extrahieren wird auch die Aktualisierungszeit beschleunigt, da Tableau nicht die gesamte Extraktdatei aktualisiert. Es fügt nur neue Datensätze hinzu. Um inkrementelle Extrakte auszuführen, müssen Sie ein Feld angeben, das als Index verwendet werden soll. Tableau aktualisiert die Zeile nur, wenn sich der Index geändert hat. Daher müssen Sie beachten, dass Änderungen an einer Datenzeile, die das Indexfeld nicht ändert, von der Aktualisierung nicht berücksichtigt werden.

Datenmenge mit Filtern einschränken:

Eine andere Möglichkeit, Extrakte zu beschleunigen, besteht darin, beim Extrahieren der Daten Filter anzuwenden. Wenn für die Analyse nicht die gesamte Datenmenge benötigt wird, können Sie den Extrakt so filtern, dass er nur die erforderlichen Datensätze enthält. Wenn Sie eine sehr große Datenmenge haben, müssen Sie nur selten den gesamten Inhalt der Datenbank extrahieren. Zum Beispiel kann Ihre Datenbank Daten für viele Regionen enthalten, aber Sie benötigen möglicherweise nur die Daten zur Region »Süd«.

Um einen Extrakt entsprechend anzulegen, wählen Sie als Verbindung Extrakt aus und klicken dann auf das nebenstehende Bearbeiten. Es öffnet sich das Fenster Daten extrahieren. Mit einem weiteren Klick auf Hinzufügen können Sie nun einen Filter erstellen, der für Ihren Extrakt angewandt wird (siehe Abbildung 1.2).

Der Datenextrakt kann mit Filtern eingeschränkt werden
Abbildung 1.2: Der Datenextrakt kann mit Filtern eingeschränkt werden

Weitere Funktionen für bestimmte Datenquellen:

Wenn Ihre Daten aus einer bestimmten Datenquelle stammen, so sind unter anderem Aggregationsfunktion wie Median (beispielsweise bei Access-Datenbanken ) bei einer Live-Verbindung nicht verfügbar. Arbeiten Sie mit einem Extrakt, können Sie diese Funktionen nutzen, auch wenn sie von der ursprünglichen Datenquelle nicht unterstützt werden.

Datenübertragbarkeit:

Sie können Extrakte lokal speichern und auch dann verwenden, wenn die Verbindung zu Ihrer Datenquelle nicht verfügbar ist. Eine Live-Verbindung funktioniert nicht, wenn Sie nicht über ein lokales Netzwerk oder das Internet auf Ihre Datenquelle zugreifen können. Extrakte werden außerdem komprimiert und sind normalerweise wesentlich kleiner als die ursprünglichen Datenbanktabellen, was dem Weitertransport der Daten zugutekommt.

Achten Sie auf Datenschutz und Data Governance

In Unternehmen spielen Datenschutz und Data Governance und damit verbunden Integrität und Sicherheit der Daten eine wichtige Rolle. Wenn Sie Extrakte an Mitarbeiter oder Geschäftspartner verteilen, sollten Sie die etwaige Vertraulichkeit Ihrer Daten berücksichtigen. Ziehen Sie in Betracht, den Inhalt des Extrakts über Filter einzuschränken und zu sichtbaren Dimensionen zu aggregieren.

Sind Sie sich unsicher, arbeiten Sie im Zweifelsfall besser mit einer Live-Verbindung, da in diesem Fall Ihre Datenbank das Rechte-Management steuert und so Ihre Daten nicht von Personen ohne ausreichende Berechtigungen gesehen werden können.

Dieser Blog-Post ist ein Auszug aus dem Buch “Datenvisualisierung mit Tableau“, das am 31. Juli 2018 erschienen ist:

Datenvisualisierung mit Tableau
  • Alexander Loth
  • Publisher: mitp
  • Edition no. 2018 (31.07.2018)
  • Broschiert: 224 pages

Join my Social Media Analytics sessions at Tableau Conference #data18

Are you ready for Tableau Conference 2018? Don’t miss my Social Media Analytics sessions!

Why do we need Social Media Analytics?

Social Media Analytics transforms raw data from social media platforms into insight, which in turn leads to new business value.

What will your learn in this sessions?

Once you dive into Social Media Analytics, how do you bring it to the next level? Social data can offer powerful insights right away. In this session, you will learn how to build a mature social data program from that foundation and strategies for scaling a social data programme, as well as how to connect directly to your social media data with a web data connector; considerations for building scalable data sources; and tips for using metadata and calculations for more sophisticated analysis.

Where and when are the sessions?

Do you want to learn more about Social Media Analytics with Tableau? Meet me at the 2018 Tableau Conferences in London or New Orleans and join my sessions:

Anything to prepare?

Yes, I’m glad that you ask:

[Update 5 Jul 2018]:

[Update 6 Jul 2018]:

Data Operations: Daten für die Analyse optimal vorbereiten

#dataops: Folgen Sie der Diskussion auf Twitter
#dataops: Folgen Sie der Diskussion auf Twitter

Kürzlich habe ich einige Blog-Posts zum Thema Datenstrategie veröffentlicht. Für viele Unternehmen geht die Entwicklung und Einführung einer Datenstrategie nicht tief genug. Häufig habe ich ähnliches gehört: “So weit ist unser Unternehmen noch gar nicht. Wir haben noch viel operativ vorzubereiten, bevor wir eine Datenstrategie voll umfänglich etablieren können.”

Ich habe in diesen Gesprächen nachgehakt, wo diese grundlegenden Lücken in den Unternehmen bestehen, und entschlossen eine neue Blog-Post-Serie aufzusetzen, um zum Thema Data Operations (#dataops) konkrete und einfach umsetzbare Vorschläge zu geben.

Daten für die Analyse vorbereiten

Eine der wesentlichen Fragen, die sich Datenanalysten immer wieder stellen, lautet: “Gibt es eine Möglichkeit meine Daten für die Verwendung mit Analysewerkzeugen, wie Tableau, optimal vorzubereiten?”

Daten können auf unterschiedliche Arten strukturiert sein. Die meisten neuen Tableau-Anwender erliegen der Versuchung, Tableau mit einem bereits formatierten und voraggregierten Excel-Bericht (siehe Abbildung 1.1) zu verbinden und diesen in Tableau zu visualisieren. Heißt es nicht mit Tableau können Daten jeder Art einfach und intuitiv verwenden werden? Sehr schnell stellt man fest, dass ein solches Vorgehen nicht funktioniert, wie erwartet und sich so auch keine Visualisierungen erstellen lassen.

Abbildung 1.1: Bereits formatierter und voraggregierter Excel-Bericht
Abbildung 1.1: Bereits formatierter und voraggregierter Excel-Bericht

Dieses Szenario, dem viele Einsteiger begegnen, ist nicht ungewöhnlich und tatsächlich ein häufiger Stolperstein bei der Einarbeitung in Tableau, der die Analyse Ihrer Daten erschweren kann.

Die folgenden Punkte zeigen Ihnen Vorschläge zur sauberen Vorbereitung Ihrer Daten anhand des Beispielberichts:

  • Verzichten Sie auf den einleitenden Text (“Temperaturmessung zum Monatsbeginn”).
  • Überführen Sie hierarchische Überschriften (“Frankfurt”, “Berlin”) auf eine Spalteninformation (neue Spalte “Ort”).
  • Pivotisieren Sie Daten von einer “weiten” Kreuztabelle mit Variablen in Spalten (“Früh”, “Mittag”, “Abend”) in eine “lange” Tabelle, die die Variablen stets in den Zeilen trägt (in diesem Beispiel die Uhrzeit).
  • Nutzen Sie vollständige Datums- und ggf. Zeitformate (“01.04.2018 06:00”) anstatt z.B. nur den Monatsnamen (“April”).
  • Überprüfen Sie, dass Zahlen im Zahlenformat und nicht im Textformat gespeichert sind.
  • Verzichten Sie voraggregierte Daten (“Durchschnitt”, “Gesamtdurchschnitt”).
  • Entfernen Sie leere Zeilen.
  • Achten Sie darauf, dass jede Spate eine aussagekräftige Spaltenüberschrift trägt.

Haben Sie diese Vorschläge befolgt, ist aus Ihrer “weiten” Kreuztabelle nun eine “lange” Zeilen-basierte Tabelle geworden, und damit die perfekte Basis zur umfangreichen Datenanalyse (siehe Abbildung 1.2).

Abbildung 1.2: Zur Datenanalyse geeignete „lange Tabelle“ ohne Aggregationen
Abbildung 1.2: Zur Datenanalyse geeignete „lange Tabelle“ ohne Aggregationen

Dieser Blog-Post ist ein Auszug aus dem Buch “Datenvisualisierung mit Tableau“, das am 31. Juli 2018 erscheinen wird:

Datenvisualisierung mit Tableau
  • Alexander Loth
  • Publisher: mitp
  • Edition no. 2018 (31.07.2018)
  • Broschiert: 224 pages

Leadership: Stagnation Kills Your Business, 3 Times

Petronas Twin Towers
Petronas Twin Towers held the title of the tallest building in the world for six years (Flickr)

Your business has been thriving, and the pipeline is well filled with work? Don’t get comfortable too soon. Stagnation kicks in fast nowadays, and kills your business’ innovation, its growth, and its people.

1. Innovation 

The speed of transformation that we are currently witnessing is challenging all of us to think differently. Every industry can be disrupted, there is no safe habour. So we need to deliver our products and services in a way that is relevant today, not yesterday.

Minor product iterations do not work forever. We need to prepare product revolutions, not just iterations on what we were selling since ten years. Establishing an innovation lab engages our employees to think in innovative ways and lift our business to new heights.

2. Growth

We need to adjust our business development plan to drive business growth. This should not be a static document. Customer and market definition are changing fast and we need to adopt this in our sales strategy and in our product development.

This does not work without data. Therefore we need to implement a data strategy. Our data strategy guides our entire business how to collect and analyze data, and how to generate the insights that we use for our decisions. If we do not take advantage of data, our competition will do.

3. People

Sushi Google DoodleIt is essential for leaders to recognize that you cannot possibly manage everything. We need to employ great people. But recruiting is not the end. We need to keep your talents, empower them, and motivate them to take initiative in their roles. Stagnation will rotate employees out of the company.

Offering free sushi and laundry service might impress our new hires from university. Experienced and independent employees will be more interested in career perspectives. We should establish personal development plans for everyone, not just for the designated managers.

Although it is important for leaders to set such a career framework, we should not forget to invest in your employees’ training. Both, hard skills (technical) and soft skills (non-technical), are mandatory because they each play very important roles in the development of our employees.

In Summary

Yesterday’s innovations are tomorrow’s commodities. We need to invest in innovations, otherwise we will face disruptive competition. Creating insights from data is important for the iterative adjustments on our business development plan. Offering personal development plans and proper training avoids stagnation for your employees, which is causing brain drain.

This post is also published on LinkedIn.

Hyper Kickoff Event: 5th Frankfurt Analytics + Tableau User Group Meetup

Tableau Hyperfest: Hyper Kickoff Event at Tableau's Frankfurt office
Tableau Hyperfest: Hyper Kickoff Event at Tableau’s Frankfurt office

We’d like to invite you to the 5th Frankfurt Analytics + Tableau User Group Meetup.

Join us for the global launch of Tableau’s super fast data engine, Hyper! Hyper brings faster data refreshes and query performance to Tableau extracts, plus increased scalability in a platform-wide update.

This is your opportunity to get to know the Hyper dev team, hear from Tableau beta customers about their hands-on Hyper experience, and participate in live Q&A. Best of all, learn more about Hyper’s patent-pending technology as well as some of the other features headed your way in 10.5. (Viz in Tooltip, anyone?)

Tableau is hosting the Hyperfest meetup – come and celebrate with the community and the world on the upcoming release of Hyper. In addition to the Hyper presentation, we will also have food, drinks and Tableau swag, so don’t miss it!

-> Sign Up <-

Tableau Hyperfest meetup event page
Sign up for free at the Hyperfest meetup event page

Agenda

9:00pm: Doors Open

9:30pm: Presentations:

10:30pm: Drinks & Networking

11:00pm: Live Hyperfest Viewing Party

Midnight: Event Concludes

Livestream: Follow us on Twitter @FraAnalytics and check for the livestream and additional content!

Feedback and ideas: Let us know if you’d like to discuss a particular topic or if you want to become one of our future speakers – email or twitter.