10 BI & Analytics Trends, die in keiner Datenstrategie fehlen dürfen

Tableau-Webinar zu den Top 10 der Business Intelligence Trends für das Jahr 2017
Tableau-Webinar zu den Top 10 der Business Intelligence Trends für das Jahr 2017

Noch vor einigen Jahren analysierte ich am CERN Daten im Petabyte-Bereich, die wir an den Experimenten des Large Hadron Collider einsammelten. Dazu war vor allem viel Arbeit in der Kommandozeile notwenig. R, Python, Gnuplot und SQL gehörten zu meinem Alltag. Dann habe ich Tableau kennengelernt und habe auf den Großteil meiner Skripte verzichten können. Meine Analysen waren fortan interaktiv, und die Datenstrategie hat sich grundlegend geändert.

Nicht nur in der Forschung hat sich hier viel getan. Auch Business Intelligence hat in den vergangenen Jahren tiefgreifende Änderungen erfahren. Standen 2015 noch Cloud Analytics, Data Science und die Anbindung von Big Data im Vordergrund, so sind 2016 eindeutig Self-Service-Analysen in den Fokus gerückt. Mehr Unternehmen gewähren ihren Mitarbeitern Zugriff auf ihre Daten. Mehr Menschen verstehen Daten als wichtiges Hilfsmittel zur Erfüllung ihrer Aufgaben.

Welche BI & Analytics Trends dürfen 2017 in keiner Datenstrategie fehlen?

1. Jeder kann die “moderne BI” nutzen

Moderne BI ist ein Modell der Business Intelligence, das Daten für mehr Mitarbeiter in den verschiedensten Rollen zugänglich macht. Dieser Aspekt wird auch im 2016 BI Magic Quadrant von Gartner erwähnt. Dort steht, dass wir „die entscheidende Wende eines mehr als 10 bis 11 Jahre währenden Übergangs von IT-zentrierten Berichtsplattformen zu modernen BI- und Analyseplattformen überschritten“ haben. Dies ist besonders wichtig für Unternehmen die möglicherweise Terabytes oder mehr Daten haben und sicherstellen müssen, dass die Anwender ihre Analysen mit bereinigten und von der IT genehmigten Datenbeständen durchführen.

2. Analysen werden kollaborativer

Bei der Zusammenarbeit werden wir 2017 eine Veränderung beobachten. Anstatt statische Berichte weiterzuleiten werden die Anwender interaktive Arbeitsmappen und Datenquellen gemeinsam nutzen, die als Grundlage für ihre Geschäftsentscheidungen dienen. Stellen Sie sich beispielsweise vor, dass Sie in einer wöchentlichen Geschäftsbesprechung ein interaktives Dashboard aufrufen, um KPIs zu prüfen. Es wird auch durchaus üblich sein, in diesen Dashboards direkt vom Browser oder dem iPad aus Analysen durchzuführen.

3. Alle Daten werden gleichberechtigt

2017 wird der Wert der Daten nicht mehr an Rangordnung oder Größe gebunden sein. Das Laden einer Datenbank mit Milliarden Zeilen sollte genauso vonstatten gehen wie das Laden einer Excel-Tabelle mit 150 Zeilen von Ihrem Desktop. Von Bedeutung wird sein, dass die Mitarbeiter schnell und einfach auf Daten zugreifen können und sie zusammen mit anderen Datentypen untersuchen können.

4. Selfservice wird auf die Datenvorbereitung ausgeweitet

Der Trend zu Benutzerfreundlichkeit und Agilität, der die Märkte für BI und Analysen umgewälzt hat, erreicht nun die Datenvorbereitung. Das bedeutet, dass gängige Aufgaben wie syntaktische Analyse, JSON- und HTML-Importe und die Durcharbeitung der Daten nicht mehr an Spezialisten delegiert wird. Stattdessen werden Nicht-Analysten in der Lage sein, diese Aufgaben als Teil ihres Analyse-Flows zu übernehmen.

5. Arbeiten mit Daten, ohne es zu wissen

Es ist nicht überraschend, dass Analytics am besten funktioniert, wenn es ein natürlicher Teil des Workflows ist. 2017 werden Analysen allgegenwärtig sein werden und sämtliche Geschäftsprozesse bereichern. Embedded BI wird die Reichweite der Analysen derart vergrößern, dass diese Entwicklung möglicherweise gar nicht bewusst wahrgenommen wird. Ähnlich ist es bereits bei der prädiktiven Analyse, die auf Netflix einen Film empfiehlt. Das sind die Ergebnisse von Analysen. Die meisten Menschen sind sich dessen gar nicht bewusst.

6. Die IT wird zum Datenhelden

Seit Jahrzehnten haben IT-Abteilungen damit zu kämpfen, endlos Berichte zu erstellen, um Anfragen vom Geschäftsbetrieb zu beantworten. Dieser Zyklus wird jetzt unterbrochen. IT-Abteilungen produzieren nicht mehr, sondern unterstützen und sorgen für Governance, Datensicherheit und Compliance. Die IT befähigt das Unternehmen, datenorientierte Entscheidungen mit der vom Markt geforderten Schnelligkeit zu treffen. So wird die IT gewissermaßen zum Datenhelden.

7. Die Mitarbeiter arbeiten auf natürlichere Weise mit Daten

SQL zu schreiben ist kein sehr natürlicher Weg, um mit Daten zu arbeiten. 2017 wird die Benutzeroberfläche für die Arbeit mit Daten noch natürlicher wird, und zwar durch natürliche Sprache. Analyse mit natürlicher Sprache bedeutet, dass Datenfragen mit gängigen Wörtern formuliert werden. So können Daten, Grafiken und Dashboards noch leichter zugänglich gemacht werden, indem Sie den Mitarbeitern die Möglichkeit geben, auf neue Art und Weise mit Daten zu interagieren.

8. Der Übergang zur Cloud beschleunigt sich

Datenschwerkraft ist die Idee, dass wir die Analysen dort ausführen wollen, wo sich die Daten befinden. Wenn Ihre Daten also in der Cloud gespeichert sind, wollen wir auch die Analysen dort ausführen. 2017 werden Daten in der Cloud genug „Schwerkraft“ entwickeln, um Unternehmen dazu zu bewegen, ihre Analysen dort bereitzustellen, wo sich die Daten befinden. Cloud-Data-Warehouses wie Amazon Redshift werden sehr beliebte Datenstandorte bleiben und in der Folge werden Cloud-Analysen allgegenwärtig sein.

9. Advanced Analytics wird leichter zugänglich

Nicht jeder Anwender  kann R oder Python programmieren. Insbesondere Geschäftsanwender werden sich diese Kenntnisse auch nicht aneignen wollen und vermeiden Analysefunktionen, die solche Skriptsprachen erfordern. 2017 werden Advanced Analytics (ausgefeilte, leistungsstarke Analysefunktionen) zugänglicher und für Geschäftsanwender für den täglichen Einsatz verfügbar sein.

10. Daten- und Analysekompetenz steht im Mittelpunkt

Es gibt keinen Beruf, der heute ohne Daten auskommt. Das bedeutet, dass Daten- und Analysekompetenz immer wichtiger werden wird – unabhängig von der Rolle und der Position im Unternehmen. Seit zwei aufeinanderfolgenden Jahren wurde diese Kompetenz als die wichtigste Einstellungsvoraussetzung bei LinkedIn aufgeführt. Am Arbeitsplatz werden intuitive Analytics-Plattformen eingeführt, die auf allen Ebenen Entscheidungsgrundlagen bereitstellen. Aber die Fähigkeiten der Mitarbeiter bilden das Fundament diese zu nutzen.

Möchten Sie mehr zu den neuesten Trends im Bereich Business Intelligence und Business Analytics erfahren? Dann freue ich mich Sie auf unserem Live-Webinar am 21. Februar 2017 begrüßen zu dürfen.

[Update 22 Feb 2017]: Sie haben das Webinar verpasst? Dann können Sie hier die Aufzeichnung ansehen:

Price and Sentiment Analysis: Why is Bitcoin Going Down?

Bitcoin Price and Sentiment Analysis with variable Moving Average: click to open interactive Tableau dashboard with annotations
Bitcoin Price and Sentiment Analysis with variable Moving Average: click to open interactive Tableau dashboard with annotations

Bitcoin has become one of the trendy investment assets in the recent years. Whenever bitcoin prices approach historical highs, every investor should watch the currency closely. Bitcoin rallied by more than 20% in the first days of 2017, crossing the $1000 mark for the first time since November 2013.

As many experienced bitcoin traders will remember, the first $1000 peak was a case of obvious over exuberance. Bitcoin was hot, plenty of money was pouring into it. Bitcoin investors got too excited, causing a price surge. Prices then rebounded and suffered a long-term collapse shortly after.

Moving Average Convergence/Divergence Indicator

Many traders rely on a Moving Average Convergence/Divergence (MACD) indicator. The MACD is a measure of the convergence and divergence between two EMAs (usually 12 and 26 days) and is calculated by subtracting the two of them. The signal line is constructed by creating an EMA (usually 10 days) of the signal line.

The signal line crossing the MACD from above is a buy signal. The signal line crossing the MACD from below is a sell signal. Relying only on momentum-based indicators (such as the MACD) and optimization-based models, however, will most certainly fail to indicate heavy price drops, as the drop in late 2016.

Predicting Fear with Sentiment Analysis

In late 2016 a lot of people began to pour money into bitcoin again. This time because they were worried that stock markets and other assets were due for a drop. For investors, it is essential to figure out whether or not these fears are actually founded. However, such “safe assets” are prone to suffering from bubbles. People get scared, get invested into gold, or bitcoin, then realize that their fears were unfounded. As a result bitcoin prices could plummet.

So how to catch emotions such as fear in advance? Twitter is a valuable source of information and emotion. It certainly influences the stock market and can help to predict the market. Sentiment analysis can lead price movements by up to two days. Negative sentiment, however, is reflected in the market much more than positive sentiment. This is probably because most people tweet positive things about bitcoins most of the time. Even more positive news occurred after breaking the $1000 barrier.

 
This content is part of the session “Price and Sentiment Analysis: Why is Bitcoin Going Down?” that I deliver at the Frankfurt Bitcoin Colloquium. Have a look on my upcoming sessions!

Feel free to share the Bitcoin Price and Sentiment Analysis dashboard, which is also featured as Viz of the Day on Tableau Public:

Data Strategy: Steigern smarte Erkenntnisse den Business Impact?

Abbilding 2: Loth-Modell des Reifegrads von Advanced Analytics
Abbilding 2: Loth-Modell des Reifegrads von Advanced Analytics

Die voranschreitende digitale Transformation liefert Daten über nahezu jede Facette unseres Tuns. Jeder Besuch eine Webseite, jeder Klick, jede Suchanfrage und jeder Einkauf wird protokolliert und entweder mit unserer virtuellen Identität (wenn wir angemeldet sind) verknüpft, oder in einem System gespeichert, dass unsere Sitzung per Cookie oder digitalem Fingerabdruck verarbeitet.

Sind diese Daten erst einmal erhoben, werden sie für gewöhnlich in Silos der einzelnen Funktionen (vertikales Silo), Abteilungen (horizontales Silo), oder sogar in individuellen Projektsilos abgelegt. Um aus diesen Daten eine wertvolle und nützliche Ressource zu machen, müssen wir diese Silos aufbrechen. Dem stehen allerdings oft Fragen zur Inhaberschaft, Regularien und Governance im Weg.

Das Sammeln von Daten allein generiert aber keinen Mehrwert. Der tatsächliche Business Impact hängt davon ab, wie “smart” die gewonnen Erkenntnisse sind. Und das wiederum wird von der Vollständigkeit der Advanced-Analytics-Lösung (siehe Abbildung 2) und der Komplexität der eingesetzten Modelle bestimmt. Präskriptive und Semantische Analysen sind unter Umständen nur sehr schwer umzusetzen, insbesondere wenn es zunächst gilt, semi-strukturierte Daten – wie etwa Social Media-Streams – zu klassifizieren.

Vergessen Sie also über die Umsetzung komplexer Modelle nicht, die leichte Beute einzusacken: lassen Sie all Ihre quantitativen Informationen einfließen (beispielsweise Umsatzdaten), um Ihre diagnostischen Möglichkeiten zu skalieren.

Für die meisten Entscheidungsträger besteht die Herausforderung nicht in einem Mangel an Daten oder Datenquellen, sondern dass die zur Verfügung stehenden Datenquellen oftmals unterschiedliche Ergebnisse liefern oder schlichtweg nicht geeignet sind, die jeweils anstehende Entscheidung sinnvoll zu informieren.

Leider wird die Rolle der IT dabei oft unterschätzt. Die größte Herausforderung für Entscheidungsträger im Analytics-Zeitalter ist die eingefahrene Sichtweise, dass Unternehmen ihrer eigenen Datenbasis bestehend aus Interaktionen mit potentiellen Kunden, Kunden, Lieferanten und Partnern weniger vertrauen können, als externen Erkenntnisquellen.

Dieser Beitrag ist der zweite Teil der Datenstrategie-Serie:

Teil 1: Die Notwendigkeit einer modernen Datenstrategie im Zuge der digitalen Transformation
Teil 2: Steigern smarte Erkenntnisse den Business Impact?
Teil 3: Wie unterstützen Analysen Ihre Entscheidungsfindung?
Teil 4: Erstickt Innovation zwischen Berichtswesen und Data Discovery?

Data Strategy: Die Notwendigkeit einer modernen Datenstrategie im Zuge der digitalen Transformation

Abbildung 1: Analysten schätzen, dass das Datenvolumen in den kommenden Jahren rasant steigend wird
Abbildung 1: Analysten schätzen, dass das Datenvolumen in den kommenden Jahren rasant steigend wird

Traditionell sind es die Mitarbeiter, die gute – oder zumindest glückliche – Entscheidungen treffen, die die Karriereleiter innerhalb von Unternehmen erklimmen. Und diese Kultur des Respekts gegenüber guten Instinkten durchdringt auch heutzutage noch die Entscheidungsfindung in vielen Unternehmen.

In manchen Fällen werden Berater hinzugezogen, um unliebsamen oder rein präferentiellen Entscheidungen den Anschein externer Validierung zu geben; in anderen Fällen verlässt man sich auf die Weisheit von Vorgesetzten, Mentoren oder Gurus. Es zeichnet sich jedoch ab, dass bei Entscheidungen, die ein Unternehmen von sich aus nicht ohne weiteres unterstützen kann, immer mehr das Kollektiv herangezogen wird und man sich bei Entscheidungsfindung und Problemlösung der Kraft großer Zahlen bedient.

In unserer digital vernetzten Welt fallen jeden Tag Unmengen von Daten an (siehe Abbildung 1). Das exponentielle Wachstum der Menge an generierten Daten führt unweigerlich zur digitalen Transformation ganzer Geschäftsmodelle. Nur Unternehmen, die große Datenmengen aus unterschiedlichen Quellen in umsetzbare Erkenntnisse verwandeln können, werden langfristig wettbewerbsfähig bleiben. Dazu bedarf es einer modernen Strategie, die den Fokus auf Daten legt und weit über deren reine Erhebung hinausgeht.

Eine unternehmensweite Bereitstellung von Advanced Analytics und Data Science as a Service (DSaaS) kann hier einen Wettbewerbsvorteil bedeuten, insbesondere wenn sie den Schwerpunkt darauf legt, die Mitarbeiter mit den richtigen analytischen Werkzeugen auszustatten. Sind diese Werkzeuge einfach zu verwenden und gut in die tägliche Arbeit integriert, lässt sich die Akzeptanz – und somit Wirkung – maximieren.

Dieser Beitrag ist der erste Teil der Datenstrategie-Serie. In den kommenden Wochen folgen weitere Beiträge, die Fragen zur modernen Datenstrategie näher beleuchten werden:

Teil 1: Die Notwendigkeit einer modernen Datenstrategie im Zuge der digitalen Transformation
Teil 2: Steigern smarte Erkenntnisse den Business Impact?
Teil 3: Wie unterstützen Analysen Ihre Entscheidungsfindung?
Teil 4: Erstickt Innovation zwischen Berichtswesen und Data Discovery?

TabPy Tutorial: Integrating Python with Tableau for Advanced Analytics

TabPy allows Tableau to execute Python code on the fly
TabPy allows Tableau to execute Python code on the fly

In 2013 Tableau introduced the R Integration, the ability to call R scripts in calculated fields. This opened up possibilities such as K-means clustering, Random Forest models and sentiment analysis. With the release of Tableau 10.1, we can enjoy a new, fancy addition to this feature: the Python Integration through TabPy, the Tableau Python Server.

Python is a widely used general-purpose programming language, popular among academia and industry alike. It provides a wide variety of statistical and machine learning techniques, and is highly extensible. Together, Python and Tableau is the data science dream team to cover any organization’s data analysis needs.

In this tutorial I’m going to walk you through the installation and connecting Tableau with TabPy. I will also give you an example of calling a Python function from Tableau to calculate correlation coefficients for a trellis chart.

1. Install and start Python and TabPy

Download TabPy from Tableau’s GitHub repository:

> git clone git://github.com/tableau/TabPy

TabPy download via GitHub

Within the TabPy directory, execute setup.sh (or setup.bat if you are on Windows). This script downloads and installs Python, TabPy and all necessary dependencies. After completion, TabPy is starting up and listens on port 9004.

2. Connecting Tableau to TabPy

In Tableau 10.1, a connection to TabPy can be added in Help > Settings and Performance > Manage External Service Connection:

Tableau Help menu

Set port to 9004:

TabPy port 9004

3. Adding Python code to a Calculated Field

You can invoke Calculated Field functions called SCRIPT_STR, SCRIPT_REAL, SCRIPT_BOOL, and SCRIPT_INT to embed your Python script in Tableau:

Python script within Tableau

4. Use Calculated Field in Tableau

Now you can use your Python calculation as Calculated Field in your Tableau worksheet:

Tableau Worksheet

Feel free to download the Tableau Packaged Workbook (twbx) here.

Translated to Japanese by Tomohiro Iwahashi: Tableau + Python 連携 (Tabpy) を使ってみよう!