10 BI & Analytics Trends, die in keiner Datenstrategie fehlen dürfen

Tableau-Webinar zu den Top 10 der Business Intelligence Trends für das Jahr 2017
Tableau-Webinar zu den Top 10 der Business Intelligence Trends für das Jahr 2017

Noch vor einigen Jahren analysierte ich am CERN Daten im Petabyte-Bereich, die wir an den Experimenten des Large Hadron Collider einsammelten. Dazu war vor allem viel Arbeit in der Kommandozeile notwenig. R, Python, Gnuplot und SQL gehörten zu meinem Alltag. Dann habe ich Tableau kennengelernt und habe auf den Großteil meiner Skripte verzichten können. Meine Analysen waren fortan interaktiv, und die Datenstrategie hat sich grundlegend geändert.

Nicht nur in der Forschung hat sich hier viel getan. Auch Business Intelligence hat in den vergangenen Jahren tiefgreifende Änderungen erfahren. Standen 2015 noch Cloud Analytics, Data Science und die Anbindung von Big Data im Vordergrund, so sind 2016 eindeutig Self-Service-Analysen in den Fokus gerückt. Mehr Unternehmen gewähren ihren Mitarbeitern Zugriff auf ihre Daten. Mehr Menschen verstehen Daten als wichtiges Hilfsmittel zur Erfüllung ihrer Aufgaben.

Welche BI & Analytics Trends dürfen 2017 in keiner Datenstrategie fehlen?

1. Jeder kann die “moderne BI” nutzen

Moderne BI ist ein Modell der Business Intelligence, das Daten für mehr Mitarbeiter in den verschiedensten Rollen zugänglich macht. Dieser Aspekt wird auch im 2016 BI Magic Quadrant von Gartner erwähnt. Dort steht, dass wir „die entscheidende Wende eines mehr als 10 bis 11 Jahre währenden Übergangs von IT-zentrierten Berichtsplattformen zu modernen BI- und Analyseplattformen überschritten“ haben. Dies ist besonders wichtig für Unternehmen die möglicherweise Terabytes oder mehr Daten haben und sicherstellen müssen, dass die Anwender ihre Analysen mit bereinigten und von der IT genehmigten Datenbeständen durchführen.

2. Analysen werden kollaborativer

Bei der Zusammenarbeit werden wir 2017 eine Veränderung beobachten. Anstatt statische Berichte weiterzuleiten werden die Anwender interaktive Arbeitsmappen und Datenquellen gemeinsam nutzen, die als Grundlage für ihre Geschäftsentscheidungen dienen. Stellen Sie sich beispielsweise vor, dass Sie in einer wöchentlichen Geschäftsbesprechung ein interaktives Dashboard aufrufen, um KPIs zu prüfen. Es wird auch durchaus üblich sein, in diesen Dashboards direkt vom Browser oder dem iPad aus Analysen durchzuführen.

3. Alle Daten werden gleichberechtigt

2017 wird der Wert der Daten nicht mehr an Rangordnung oder Größe gebunden sein. Das Laden einer Datenbank mit Milliarden Zeilen sollte genauso vonstatten gehen wie das Laden einer Excel-Tabelle mit 150 Zeilen von Ihrem Desktop. Von Bedeutung wird sein, dass die Mitarbeiter schnell und einfach auf Daten zugreifen können und sie zusammen mit anderen Datentypen untersuchen können.

4. Selfservice wird auf die Datenvorbereitung ausgeweitet

Der Trend zu Benutzerfreundlichkeit und Agilität, der die Märkte für BI und Analysen umgewälzt hat, erreicht nun die Datenvorbereitung. Das bedeutet, dass gängige Aufgaben wie syntaktische Analyse, JSON- und HTML-Importe und die Durcharbeitung der Daten nicht mehr an Spezialisten delegiert wird. Stattdessen werden Nicht-Analysten in der Lage sein, diese Aufgaben als Teil ihres Analyse-Flows zu übernehmen.

5. Arbeiten mit Daten, ohne es zu wissen

Es ist nicht überraschend, dass Analytics am besten funktioniert, wenn es ein natürlicher Teil des Workflows ist. 2017 werden Analysen allgegenwärtig sein werden und sämtliche Geschäftsprozesse bereichern. Embedded BI wird die Reichweite der Analysen derart vergrößern, dass diese Entwicklung möglicherweise gar nicht bewusst wahrgenommen wird. Ähnlich ist es bereits bei der prädiktiven Analyse, die auf Netflix einen Film empfiehlt. Das sind die Ergebnisse von Analysen. Die meisten Menschen sind sich dessen gar nicht bewusst.

6. Die IT wird zum Datenhelden

Seit Jahrzehnten haben IT-Abteilungen damit zu kämpfen, endlos Berichte zu erstellen, um Anfragen vom Geschäftsbetrieb zu beantworten. Dieser Zyklus wird jetzt unterbrochen. IT-Abteilungen produzieren nicht mehr, sondern unterstützen und sorgen für Governance, Datensicherheit und Compliance. Die IT befähigt das Unternehmen, datenorientierte Entscheidungen mit der vom Markt geforderten Schnelligkeit zu treffen. So wird die IT gewissermaßen zum Datenhelden.

7. Die Mitarbeiter arbeiten auf natürlichere Weise mit Daten

SQL zu schreiben ist kein sehr natürlicher Weg, um mit Daten zu arbeiten. 2017 wird die Benutzeroberfläche für die Arbeit mit Daten noch natürlicher wird, und zwar durch natürliche Sprache. Analyse mit natürlicher Sprache bedeutet, dass Datenfragen mit gängigen Wörtern formuliert werden. So können Daten, Grafiken und Dashboards noch leichter zugänglich gemacht werden, indem Sie den Mitarbeitern die Möglichkeit geben, auf neue Art und Weise mit Daten zu interagieren.

8. Der Übergang zur Cloud beschleunigt sich

Datenschwerkraft ist die Idee, dass wir die Analysen dort ausführen wollen, wo sich die Daten befinden. Wenn Ihre Daten also in der Cloud gespeichert sind, wollen wir auch die Analysen dort ausführen. 2017 werden Daten in der Cloud genug „Schwerkraft“ entwickeln, um Unternehmen dazu zu bewegen, ihre Analysen dort bereitzustellen, wo sich die Daten befinden. Cloud-Data-Warehouses wie Amazon Redshift werden sehr beliebte Datenstandorte bleiben und in der Folge werden Cloud-Analysen allgegenwärtig sein.

9. Advanced Analytics wird leichter zugänglich

Nicht jeder Anwender  kann R oder Python programmieren. Insbesondere Geschäftsanwender werden sich diese Kenntnisse auch nicht aneignen wollen und vermeiden Analysefunktionen, die solche Skriptsprachen erfordern. 2017 werden Advanced Analytics (ausgefeilte, leistungsstarke Analysefunktionen) zugänglicher und für Geschäftsanwender für den täglichen Einsatz verfügbar sein.

10. Daten- und Analysekompetenz steht im Mittelpunkt

Es gibt keinen Beruf, der heute ohne Daten auskommt. Das bedeutet, dass Daten- und Analysekompetenz immer wichtiger werden wird – unabhängig von der Rolle und der Position im Unternehmen. Seit zwei aufeinanderfolgenden Jahren wurde diese Kompetenz als die wichtigste Einstellungsvoraussetzung bei LinkedIn aufgeführt. Am Arbeitsplatz werden intuitive Analytics-Plattformen eingeführt, die auf allen Ebenen Entscheidungsgrundlagen bereitstellen. Aber die Fähigkeiten der Mitarbeiter bilden das Fundament diese zu nutzen.

Möchten Sie mehr zu den neuesten Trends im Bereich Business Intelligence und Business Analytics erfahren? Dann freue ich mich Sie auf unserem Live-Webinar am 21. Februar 2017 begrüßen zu dürfen.

[Update 22 Feb 2017]: Sie haben das Webinar verpasst? Dann können Sie hier die Aufzeichnung ansehen:

Data Strategy: Steigern smarte Erkenntnisse den Business Impact?

Abbilding 2: Loth-Modell des Reifegrads von Advanced Analytics
Abbilding 2: Loth-Modell des Reifegrads von Advanced Analytics

Die voranschreitende digitale Transformation liefert Daten über nahezu jede Facette unseres Tuns. Jeder Besuch eine Webseite, jeder Klick, jede Suchanfrage und jeder Einkauf wird protokolliert und entweder mit unserer virtuellen Identität (wenn wir angemeldet sind) verknüpft, oder in einem System gespeichert, dass unsere Sitzung per Cookie oder digitalem Fingerabdruck verarbeitet.

Sind diese Daten erst einmal erhoben, werden sie für gewöhnlich in Silos der einzelnen Funktionen (vertikales Silo), Abteilungen (horizontales Silo), oder sogar in individuellen Projektsilos abgelegt. Um aus diesen Daten eine wertvolle und nützliche Ressource zu machen, müssen wir diese Silos aufbrechen. Dem stehen allerdings oft Fragen zur Inhaberschaft, Regularien und Governance im Weg.

Das Sammeln von Daten allein generiert aber keinen Mehrwert. Der tatsächliche Business Impact hängt davon ab, wie “smart” die gewonnen Erkenntnisse sind. Und das wiederum wird von der Vollständigkeit der Advanced-Analytics-Lösung (siehe Abbildung 2) und der Komplexität der eingesetzten Modelle bestimmt. Präskriptive und Semantische Analysen sind unter Umständen nur sehr schwer umzusetzen, insbesondere wenn es zunächst gilt, semi-strukturierte Daten – wie etwa Social Media-Streams – zu klassifizieren.

Vergessen Sie also über die Umsetzung komplexer Modelle nicht, die leichte Beute einzusacken: lassen Sie all Ihre quantitativen Informationen einfließen (beispielsweise Umsatzdaten), um Ihre diagnostischen Möglichkeiten zu skalieren.

Für die meisten Entscheidungsträger besteht die Herausforderung nicht in einem Mangel an Daten oder Datenquellen, sondern dass die zur Verfügung stehenden Datenquellen oftmals unterschiedliche Ergebnisse liefern oder schlichtweg nicht geeignet sind, die jeweils anstehende Entscheidung sinnvoll zu informieren.

Leider wird die Rolle der IT dabei oft unterschätzt. Die größte Herausforderung für Entscheidungsträger im Analytics-Zeitalter ist die eingefahrene Sichtweise, dass Unternehmen ihrer eigenen Datenbasis bestehend aus Interaktionen mit potentiellen Kunden, Kunden, Lieferanten und Partnern weniger vertrauen können, als externen Erkenntnisquellen.

Dieser Beitrag ist der zweite Teil der Datenstrategie-Serie:

Teil 1: Die Notwendigkeit einer modernen Datenstrategie im Zuge der digitalen Transformation
Teil 2: Steigern smarte Erkenntnisse den Business Impact?
Teil 3: Wie unterstützen Analysen Ihre Entscheidungsfindung?
Teil 4: Erstickt Innovation zwischen Berichtswesen und Data Discovery?

Data Strategy: Die Notwendigkeit einer modernen Datenstrategie im Zuge der digitalen Transformation

Abbildung 1: Analysten schätzen, dass das Datenvolumen in den kommenden Jahren rasant steigend wird
Abbildung 1: Analysten schätzen, dass das Datenvolumen in den kommenden Jahren rasant steigend wird

Traditionell sind es die Mitarbeiter, die gute – oder zumindest glückliche – Entscheidungen treffen, die die Karriereleiter innerhalb von Unternehmen erklimmen. Und diese Kultur des Respekts gegenüber guten Instinkten durchdringt auch heutzutage noch die Entscheidungsfindung in vielen Unternehmen.

In manchen Fällen werden Berater hinzugezogen, um unliebsamen oder rein präferentiellen Entscheidungen den Anschein externer Validierung zu geben; in anderen Fällen verlässt man sich auf die Weisheit von Vorgesetzten, Mentoren oder Gurus. Es zeichnet sich jedoch ab, dass bei Entscheidungen, die ein Unternehmen von sich aus nicht ohne weiteres unterstützen kann, immer mehr das Kollektiv herangezogen wird und man sich bei Entscheidungsfindung und Problemlösung der Kraft großer Zahlen bedient.

In unserer digital vernetzten Welt fallen jeden Tag Unmengen von Daten an (siehe Abbildung 1). Das exponentielle Wachstum der Menge an generierten Daten führt unweigerlich zur digitalen Transformation ganzer Geschäftsmodelle. Nur Unternehmen, die große Datenmengen aus unterschiedlichen Quellen in umsetzbare Erkenntnisse verwandeln können, werden langfristig wettbewerbsfähig bleiben. Dazu bedarf es einer modernen Strategie, die den Fokus auf Daten legt und weit über deren reine Erhebung hinausgeht.

Eine unternehmensweite Bereitstellung von Advanced Analytics und Data Science as a Service (DSaaS) kann hier einen Wettbewerbsvorteil bedeuten, insbesondere wenn sie den Schwerpunkt darauf legt, die Mitarbeiter mit den richtigen analytischen Werkzeugen auszustatten. Sind diese Werkzeuge einfach zu verwenden und gut in die tägliche Arbeit integriert, lässt sich die Akzeptanz – und somit Wirkung – maximieren.

Dieser Beitrag ist der erste Teil der Datenstrategie-Serie. In den kommenden Wochen folgen weitere Beiträge, die Fragen zur modernen Datenstrategie näher beleuchten werden:

Teil 1: Die Notwendigkeit einer modernen Datenstrategie im Zuge der digitalen Transformation
Teil 2: Steigern smarte Erkenntnisse den Business Impact?
Teil 3: Wie unterstützen Analysen Ihre Entscheidungsfindung?
Teil 4: Erstickt Innovation zwischen Berichtswesen und Data Discovery?

Predictive Maintenance hilft Ihnen Wartungsmaßnahmen effizient zu gestalten

Screenshot
Predictive Maintenance zeigt verbleibende Nutzungsdauer von Aufzügen der Deutschen Bahn: klicken, um interaktives Dashboard zu öffnen

Nicht nur die Fertigungskosten lassen sich mit Predictive Maintenance senken. Auch im Dienstleistungsbereich entsteht durch Vorhersagen enormes Optimierungspotential. Im wesentlichen lassen sich die Fragestellungen, die im Rahmen von Predictive Maintenance gestellt werden, in drei Klassen einteilen:

  • Wie hoch ist die Wahrscheinlichkeit, dass ein Gerät in naher Zukunft ausfällt?
  • Was sind die Ursachen von Ausfällen und welche Instandhaltungsmaßnahmen sollten durchgeführt werden, um diese Probleme zu beheben?
  • Wie lang ist die Nutzungsdauer eines Gerätes?

Ein Beispiel, das die Frage der Nutzungsdauer in den Mittelpunkt rückt, zeigt das Dashboard Predictive Maintenance Deutsche Bahn Elevators. Dieses Dashboard sagt voraus, wie lange Aufzüge noch ohne Wartung auskommen (“Rest of Useful Life”). Mit dem Parameter “Material Wear Off” lässt sich zudem der Grad der Abnutzung beeinflussen.

Die visualisierten Sensordaten erlauben darüber hinaus die Möglichkeit Anomalien zu entdecken. Hier lassen sich mit den Parametern “Primary Sensor” und “Secondary Sensor” verschiedene Kombinationen analysieren. In der “Setting Matrix” werden die verschiedene Einstellungen, die beim Betreiben der Aufzüge angewandt werden zusammengefasst.

Details zu den Aufzügen werden im Tooltip angezeigt. In diesen Tooltips lassen sich darüber hinaus Wartungsaufträge via Twitter triggern:

 

Anstatt auf eine Störung zu reagieren, können Servicetechniker somit auf Vorhersagen zurückgreifen. Damit agieren sie bereits vor einem Ausfall des Aufzugs entsprechend. Techniker sind somit in der Lage einen Aufzug aus der Ferne in den Diagnosemodus zu versetzen und ihn auf einer bestimmten Etage zu parken. All dies führt zu weniger Anfahrtszeiten, gesteigerter Effizienz und geringeren Kosten.

Dieses und weitere Beispiele zeige ich auf meinem Vortrag “Industry 4.0: Self Service BI and Predictive Maintenance“ im Rahmen des IBI Symposium am 17. November 2016 in Stuttgart.

7 Fragen, die Unternehmen helfen ihr Ergebnis mit Social Media zu steigern

Twitter Sentiment Analysis: klicken, um interaktives Dashboard zu öffnen
Twitter Sentiment Analysis: klicken, um interaktives Dashboard zu öffnen

Ist der Einsatz sozialer Netze in Ihrem Unternehmen auf Marketing beschränkt, und lässt dadurch Chancen ungenutzt?

Noch immer schöpfen viele Unternehmen in Deutschland die Möglichkeiten von Social Media nur unzureichend aus. Die meisten Firmen nutzen Social Media lediglich als Marketinginstrument, senden zum Beispiel in Intervallen die gleichen Inhalte. Wesentlich weniger Unternehmen setzen Social Media dagegen in der externen Kommunikation, in Forschung und Entwicklung, zu Vertriebszwecken, oder im Kundenservice ein.

Nachfolgend betrachten wir die Twitter-Kommunikation von vier Social-Media-affinen Unternehmen etwas näher, und zeigen anhand sieben Fragestellungen was sie anders machen und wo die übrigen Nachholbedarf haben.

1. Wann und wie werden Tweets gesendet?

Ein Blick auf das Histogram lässt auf reichlich Interaktion schließen (Tweets und Replies), während das Weiterverbreiten von Tweets (Retweets) eher sporadisch auftritt:

 

2. Wie umfangreich sind die Tweets?

Wie es scheint, reitzen die meisten Tweets die von Twitter vorgesehenen 140 Zeichen aus – oder sind zumindest nahe dran:

 

3. An welchen Wochentagen wird getweetet?

Am Wochenende lässt die Kommunikation via Twitter nach. Die Verteilung der Emotionen bleibt dabei gleich, unterscheidet sich aber von Unternehmen zu Unternehmen:

 

4. Zu welcher Tageszeit wird getweetet?

Auch nachts werden weniger Tweets verfasst. Bei Lufthansa kommt es dabei recht früh zu einem Anstieg durch Pendler-Tweets, etwas später tritt dieser Effekt bei der Deutschen Bahn ein: 

 

5. Welche Art der Kommunikation herrscht vor?

Der hohe Anteil an Replies bei Telekom, Deutsche Bahn und Lufthansa impliziert, dass diese Unternehmen Twitter stark zum Dialog nutzen. Unter den Tweets der Deutsche Bank ist hingegen der Anteil an Retweets – insbesondere bei jenen mit Hashtag – deutlich höher, was auf einen höheren Nachrichtengehalt schließen lässt:

 

6. Welche User sind besonders aktiv?

Nun betrachten wir die Twitter-User, welche die entsprechend Twitter-Handles der Unternehmen besonders intensiv nutzen:

 

7. Welche Tweets erzeugen Aufmerksamkeit?

Diese Frage lässt sich am besten interaktiv im Dashboard (siehe auch Screenshot oben) untersuchen. Entscheidend ist bei dieser Betrachtung die Ermittlung der Emotion durch eine Sentiment-Analyse.

Je nach Emotion und Kontext ist es vor allem für das adressierte Unternehmen von Interesse rechtzeitig und angemessen zu reagieren. So lässt sich eine negative Stimmung frühzeitig relativieren, und so Schaden an der Marke abwenden. Positive Nachrichten können hingegen durch Weiterreichen als Multiplikator dienen.