Recap of the 15th Data & AI Meetup: Reinforcement Learning; TensorFlow on Azure; Visual Analytics

200 attendees at the 15th Data & AI Meetup at DB Systel in Frankfurt, Germany
200 attendees at the 15th Data & AI Meetup at DB Systel in Frankfurt, Germany

Yesterday we had an amazing Data & AI Meetup in Frankfurt! Let’s have a quick recap!

The venue: DB Systel’s Silberturm

DB Systel kindly hosted the 15th iteration of our Data & AI Meetup on the 30th floor of the Silberturm in Frankfurt, Germany.

Welcome & Intro

Darren Cooper and I had the pleasure to welcome 200 Data & AI enthusiasts! Furthermore, we were happy to announce that our Data & AI Meetup group has 1,070 members and our brand new Data & AI LinkedIn group already has 580 members.

Reinforcement Learning of Train Dispatching at Deutsche Bahn

Dr. Tobias Keller, Data Scientist at DB Systel, showed in his session how Deutsche Bahn aims at increasing the speed of the suburban railway system in Stuttgart (S-Bahn) using Artificial Intelligence. In particular, a simulation-based reinforcement learning approach provides promising first results.

TensorFlow & Co as a Service

Sascha Dittmann, Cloud Solution Architect for Advanced Analytics & AI at Microsoft, showed in his presentation, how TensorFlow and other ML frameworks can be used better in a team through appropriate Microsoft Cloud services. He presented different ways of how data science experiments can be documented and shared in a team. He also covered topics such as versioning of the ML models, as well as the operationalization of the models in production.

Visual Analytics: from messy data to insightful visualization

Daniel Weikert, Expert Consultant at SIEGER Consulting, showed in his session the ease of use of Microsoft Power BI Desktop. He briefly highlighted the AI Capabilities which Power BI provides and showed a way on how to get started with messy data, doing data cleaning and visualize results in an appealing way to your audience.

Speaking at an upcoming Data & AI meetup?

If you’ve dreamed of sharing your Data & AI story with many like-minded Data & AI enthusiasts, please submit your session proposal or reply to the recap tweet:

15th Data & AI Meetup: Reinforcement Learning; TensorFlow on Azure; Visual Analytics

We’d like to invite you to our 15th Data & AI Meetup, hosted at Skydeck @ DB Systel in Frankfurt, Germany.

Agenda:

5:30pm: Doors open

6:00pm: Welcome & Intro
by Alexander Loth, Digital Strategist at Microsoft
and Darren Cooper, Principal Consultant at DB Systel

6:20pm: đźš„ Reinforcement Learning of Train Dispatching at Deutsche Bahn
by Dr. Tobias Keller, Data Scientist at DB Systel

7:00pm: 🚀 TensorFlow & Co as a Service
by Sascha Dittmann, Cloud Solution Architect for Advanced Analytics & AI at Microsoft

7:40pm: đź“Š Visual Analytics: from messy data to insightful visualization
by Daniel Weikert, Expert Consultant at SIEGER Consulting

8:30pm: Networking & drinks

9:30pm: Event concludes

DB Systel Skydeck in Frankfurt (previous meetup)
DB Systel Skydeck in Frankfurt (previous meetup)

Sign up on Meetup and join us on Twitter @DataAIHub and LinkedIn!

Do you want to speak at our events? Submit your proposal here: https://aka.ms/speakAI

Machine Learning kompakt: Alles, was Sie wissen mĂĽssen

Machine Learning Kompakt Cover und Deep-Learning-Kapitel
Machine Learning kompakt und Blick in das Kapitel “Neuronale Netze und Deep Learning”

Nachdem ich bereits Erfahrung als Buchautor (hier und hier) gesammelt habe, hatte ich kĂĽrzlich die Gelegenheit als Technical Reviewer ein sehr spannendes Buchprojekt zu unterstĂĽtzen. Das Buch Machine Learning kompakt: Alles, was Sie wissen mĂĽssen, geschrieben von Andriy Burkov, fand ich dabei dermaĂźen interessant, dass ich es gerne im Folgenden kurz vorstellen werde:

Machine Learning kompakt von Andriy Burkov ist ein hervorragend geschriebenes Buch und ein Muss fĂĽr jeden, der sich fĂĽr Machine Learning interessiert.

Andriy Burkov gelang ein ausgewogenes Verhältnis zwischen der Mathematik, intuitiven Darstellungen und verständlichen Erklärungen zu finden. Dieses Buch wird Neulingen auf dem Gebiet als gründliche Einführung zu Machine Learning zugutekommen. Darüber hinaus dient das Buch Entwicklern als perfekte Ergänzung zu Code-intensiver Literatur, da hier die zugrunde liegenden Konzepte beleuchtet werden.

Microsoft Azure Machine Learning Studio
Microsoft Azure Machine Learning Studio

Machine Learning kompakt eignet sich außerdem als Lehrbuch für einen allgemeinen Kurs zu Machine Learning. Ich wünschte, ein solches Buch gäbe es, als ich studiert habe!

Protip: viele der im Buch vorgestellten Machine-Learning-Algorithmen können Sie einfach und bequem in Microsoft Azure Machine Learning Studio selbst ausprobieren: https://aka.ms/mlst

Machine Learning kompakt: Alles, was Sie wissen mĂĽssen (mitp Professional)
  • Andriy Burkov
  • Publisher: mitp
  • Edition no. 2019 (30.06.2019)
  • Broschiert: 200 pages

How China is winning in the Age of Artificial Intelligence

Alibaba Campus
Alibaba Campus

Currently, I’m on a 4-week China trip, visiting many cities. In Hangzhou, I met CEIBS peers who work for Alibaba. While the Alibaba campus is quite impressive, I got even more impressed by Alibaba’s leadership culture, which is encouraging its employees to innovate as intrapreneurs.

If you start your own project (a new mobile app, a patent, a scientific paper, etc.), you’re doing it in your own pace, you’re not being micro-managed and you’ll receive a bonus based on success. Intrapreneurship at Alibaba is just one of many examples where we (Europeans) can learn a lot from China!

Yue and me, Hangzhou West Lake

While traveling in China I was reading AI Superpowers: China Silicon Valley, and the New World Order by Kai-Fu Lee, a book that is a must-read to get an idea where China’s AI ambitions are heading to. What matters most for AI innovation these days, the author argues, is access to vast quantities of data—where China’s advantage is overwhelming.

AI Superpowers: China, Silicon Valley, and the New World Order
  • Kai-Fu Lee
  • Publisher: Houghton Mifflin Harcourt
  • Gebundene Ausgabe: 272 pages

A quite entertaining book focusing on the new mindset of China’s young generation is this one: Young China: How the Restless Generation Will Change Their Country and the World by Zak Dychtwald.

YOUNG CHINA
  • ZAK DYCHTWALD
  • Publisher: MACMILLAN USA
  • Gebundene Ausgabe: 304 pages

[Update 2 May 2019]: Which other cities in China did I visit? Check out my Tableau Public viz:

Data Operations: Wie Sie die Performance Ihrer Datenanalyse und Dashboards steigern

#dataops: Folgen Sie der Diskussion auf Twitter
#dataops: Folgen Sie der Diskussion auf Twitter

Sind Sie mit der Geschwindigkeit Ihrer Datenanlyse unzufrieden? Oder haben Ihre Dashboards lange Ladezeiten? Dann können Sie bzw. Ihr Datenbank-Administrator folgenden Hinweisen nachgehen, die sich je nach Datenquelle unterscheiden können.

Allgemeine Empfehlungen zur Performance-Optimierung

Möchten Sie die Geschwindigkeit der Analyse verbessern? Dann beachten Sie folgende Punkte:

  • Benutzen Sie mehrere »kleinere« Datenquellen fĂĽr individuelle Fragestellungen anstatt einer einzigen Datenquelle, die alle Fragestellungen abdecken soll.
  • Verzichten Sie auf nicht notwendige VerknĂĽpfungen.
  • Aktivieren Sie in Tableau die Option »Referentielle Integrität voraussetzen« im »Daten«-MenĂĽ (siehe Abbildung 2.20). Wenn Sie diese Option verwenden, schlieĂźt Tableau die verknĂĽpften Tabellen nur dann in die Datenabfrage ein, wenn sie explizit in der Ansicht verwendet wird*. Wenn Ihre Daten nicht ĂĽber referentielle Integrität verfĂĽgen, sind die Abfrageergebnisse möglicherweise ungenau.
Aktivierte Option „Referentielle Integrität voraussetzen“ im „Daten“-Menü
Abbildung 2.20: Aktivierte Option »Referentielle Integrität voraussetzen« im »Daten«-Menü

* So wird beispielsweise der Umsatz anstatt mit der SQL-Abfrage SELECT SUM([Sales Amount]) FROM [Sales] S INNER JOIN [Product Catalog] P ON S.ProductID = P.ProductID lediglich mit der SQL-Abfrage SELECT SUM([Sales Amount]) FROM [Sales] ermittelt.

Empfehlungen fĂĽr Performance-Optimierung bei Dateien und Cloud-Diensten

Achten Sie insbesondere beim Arbeiten mit Dateiformaten, wie Excel-, PDF- oder Textdateien, oder Daten aus Cloud-Diensten wie Google Tabellen zusätzlich auf folgende Punkte:

  • Verzichten Sie auf Vereinigungen ĂĽber viele Dateien hinweg, da deren Verarbeitung sehr zeitintensiv ist.
  • Nutzen Sie einen Datenextrakt anstatt einer Live-Verbindung, falls Sie nicht mit einem schnellen Datenbanksystem arbeiten (siehe Wann sollten Sie Datenextrakte und wann Live-Verbindungen verwenden).
  • Stellen Sie sicher, dass Sie beim Erstellen des Extrakts die Option »Einzelne Tabelle« wählen, anstatt der Option »Mehrere Tabellen« (siehe Abbildung 2.21). Dadurch wird das erzeugte Extrakt zwar größer und das Erstellen des Extrakts dauert länger, das Abfragen hingegen wird um ein Vielfaches beschleunigt.
Ausgewählte Option „Einzelne Tabelle“ im „Daten extrahieren“-Dialog
Abbildung 2.21: Ausgewählte Option »Einzelne Tabelle« im »Daten extrahieren«-Dialog

Empfehlungen fĂĽr Performance-Optimierung bei Datenbank-Servern

Arbeiten Sie mit Daten auf einem Datenbank-Server, wie Oracle, PostgreSQL oder Microsoft SQL Server, und möchten die Zugriffszeiten verbessern? Dann achten Sie bzw. der dafür zuständige Datenbankadministrator zusätzlich auf folgende Punkte:

  • Definieren Sie fĂĽr Ihre Datenbank-Tabellen sinnvolle Index-Spalten.
  • Legen Sie fĂĽr Ihre Datenbank-Tabellen Partitionen an.

Dieser Beitrag ist der dritte Teil der Data-Operations-Serie:

Teil 1: Daten fĂĽr die Analyse optimal vorbereiten
Teil 2: Wann sollten Sie Datenextrakte und wann Live-Verbindungen verwenden
Teil 3: Wie Sie die Performance Ihrer Datenanalyse und Dashboards steigern

AuĂźerdem basiert dieser Blog-Post auf einem Unterkapitel des Buches “Datenvisualisierung mit Tableau“:

Datenvisualisierung mit Tableau
  • Alexander Loth
  • Publisher: mitp
  • Edition no. 2018 (31.07.2018)
  • Broschiert: 224 pages