Werbung.In der heutigen datengetriebenen Welt ist es unerlässlich, ein stabiles und leistungsfähiges System zu haben, das nicht nur Daten effektiv verarbeitet, sondern auch wertvolle Einblicke liefert und diese sicher mit anderen teilt. Ein solches System wird noch wertvoller, wenn es mit fortschrittlicher Technologie wie Künstlicher Intelligenz (KI) ausgestattet ist. In diesem Zusammenhang möchte ich Euch heute eine bahnbrechende Lösung in diesem Bereich vorstellen: die Intel vPro Platform.
In der letzten Folge unseres Podcasts Die Digitalisierung und Wir haben wir über die vielfältigen Herausforderungen gesprochen, die mit der zunehmenden Digitalisierung einhergehen. Ein Kernthema, das immer wieder auf unserer Agenda steht, ist die Sicherheit. Und heute, in einer Zeit, in der Cybersicherheit und Datenmanagement zentrale Aspekte in unserer immer stärker vernetzten Welt sind, steht eine bestimmte Technologie im Rampenlicht: die Intel vPro Platform.
Was ist das Besondere an der Intel vPro Platform? Es handelt sich um ein integriertes System aus Hardware und Software, das erhebliche Vorteile für die Datenverarbeitung in Unternehmen bietet – von der Leistung über die Sicherheit bis hin zur Verwaltbarkeit und Stabilität. Wir alle wissen, wie wichtig eine sichere digitale Umgebung ist, und genau hier kommt die Intel vPro Platform ins Spiel.
Leistungsfähigkeit der Intel vPro Platform
Um euch einen Eindruck von der Leistungsfähigkeit dieser Technologie zu vermitteln, möchte ich euch eine Anekdote erzählen. Vielleicht erinnert ihr euch an eine unserer früheren Podcast-Episoden, in der wir über die Herausforderungen von Remote-Arbeit gesprochen haben. Ein IT-Manager, den ich kenne, stand vor einem großen Problem: Er musste hunderte von Laptops für das Arbeiten aus der Ferne fit machen, und zwar sicher. Mit der Intel vPro Platform konnte er diese Aufgabe erfolgreich und effizient lösen – und das von seinem Home-Office aus!
Funktionen wie die Active Management Technology (AMT) ermöglichen es, Geräte aus der Ferne zu verwalten, zu diagnostizieren und zu reparieren – selbst wenn sie ausgeschaltet sind oder ein beschädigtes Betriebssystem haben. Auch die Sicherheit kommt nicht zu kurz: Mit Technologien wie Intel Hardware Shield und diskreten Trusted Platform Module (dTPM)-Chips leistet die Platform einen wichtigen Beitrag zum Schutz vor Cyber-Bedrohungen und zur Datenverschlüsselung.
Künstliche Intelligenz zur Optimierung der Plattform
Ein weiteres Highlight ist der Einsatz von künstlicher Intelligenz zur Optimierung der Plattform. Ja, das klingt nach Science Fiction, ist aber eine reale und praktische Anwendung von KI. Sie hilft, die Leistung auf der Grundlage von Benutzerpräferenzen und Arbeitslasten zu optimieren. Die Intel vPro Plattform bietet eine einzigartige KI-basierte Bedrohungserkennung für Windows-basierte Systeme, mit der Angriffe durch Ransomware und Cryptomining gestoppt werden können.
Die jüngste Generation der Intel vPro Plattform, die auf der 13. Generation der Intel Core Prozessoren basiert, bietet eine Hybridarchitektur mit neuen Leistungs-Kernen, effizienteren Kernen bei ausgewählten Angeboten und einer intelligenteren Aufgabenklassifizierung mit dem Intel Thread Director. Zudem bietet sie eine verbesserte Energieeffizienz mit der Intel Dynamic Tuning Technology. All diese Technologien sind in Verbindung mit führenden Technologien wie Intel Wi-Fi 6E (Gig+), Thunderbolt 4 und der Validierung der Intel Evo Plattform optimiert für modernes Business-Computing.
Die Intel vPro Platform ist einzigartig in der IT-Landschaft. In der Welt der Digitalisierung, in der wir uns bewegen, kann eine solche Plattform den Unterschied zwischen einem sicher operierenden und einem verwundbaren Unternehmen ausmachen.
Die Digitalisierung hat in den letzten Jahren immer mehr an Fahrt aufgenommen und wird in absehbarer Zeit weiterhin eine zentrale Rolle in unserem Leben spielen. Um dem rasanten Wandel in der Technologie gerecht zu werden und auf dem Laufenden zu bleiben, ist es wichtig, eine verlässliche Quelle für Informationen und Diskussionen zu haben. Genau das bieten wir mit unserem Podcast „Die Digitalisierung und Wir“.
„Die Digitalisierung und Wir“ ist ein wöchentlicher Podcast, der sich auf die Erkundung der digitalen Welt konzentriert. In jeder Folge sprechen wir mit Experten, Forschern und Vordenkern über die neuesten Trends und Innovationen im Bereich der Digitalisierung, Künstlichen Intelligenz und Technologie.
Einige der Themen, die wir in unserem Podcast behandeln, sind:
KI-Kunst und generative Modelle
Datenschutz und Cybersicherheit
Bildung und die Arbeitswelt im digitalen Zeitalter
Die Rolle von KI und maschinellem Lernen in verschiedenen Branchen
Die ethischen Fragen und gesellschaftlichen Auswirkungen der Digitalisierung
Unser Ziel ist es, eine Plattform für Wissensaustausch und Diskussionen rund um die Digitalisierung zu schaffen. Wir möchten nicht nur informieren, sondern auch inspirieren und dazu beitragen, ein Bewusstsein für die Chancen und Herausforderungen der digitalen Welt zu schaffen.
Werden Sie Teil unserer wachsenden Community und bleiben Sie stets auf dem Laufenden über die neuesten Entwicklungen in der Technologie. Hören Sie unseren Podcast, teilen Sie Ihre eigenen Ideen und Erfahrungen und seien Sie Teil der Diskussion rund um die Digitalisierung und ihre Auswirkungen auf unsere Gesellschaft.
1/ 🎧Entdeckt "Die Digitalisierung und Wir" – Euren ultimativen Podcast für alles rund um #Digitalisierung, #KI, #Technologie & mehr! 🚀 Regelmäßig sprechen @xlth und @FRamseger mit Experten, Forschern und Vordenkern über Trends und Innovationen.
Following the talk, I was inspired by a conversation to leverage the power of GPT-4 and create an automatically generated summary of the Microsoft Teams transcript. This approach not only streamlines information sharing but also showcases the practical applications of advanced AI technology.
Below, I will share the key insights generated by GPT-4 and also include some captivating images from the event:
Decisively Digital: AI’s Impact on Society
In my talk, I drew inspiration from my book Decisively Digital, which discusses the impact of AI on society. I shared about the innovative projects underway at Microsoft’s AI for Good Lab. In light of GPT-4’s recent launch, I also highlighted our mission to leverage technology to benefit humanity.
By harnessing Generative AI, we can stimulate the creation of innovative ideas and accelerate the pace of advancement. This cutting-edge technology is already transforming industries by streamlining drug development, expediting material design, and inspiring novel hypotheses. AI’s ability to identify patterns in vast datasets empowers humans to uncover insights that might have gone unnoticed.
Generative AI can Augment our Thinking
For instance, researchers have employed machine learning to predict chemical combinations with the potential to improve car batteries, ultimately identifying promising candidates for real-world testing. AI can efficiently sift through and analyze extensive information from diverse sources, filtering, grouping, and prioritizing relevant data. It can also generate knowledge graphs that reveal associations between seemingly unrelated data points, which can be invaluable for drug research, discovering novel therapies, and minimizing side effects.
„Now is the time to explore how Generative AI can augment our thinking and facilitate more meaningful interactions with others.“
Alexander Loth
At the AI for Good Lab, we are currently employing satellite imagery and generative AI models for damage assessment in Ukraine, with similar initiatives taking place in Turkey and Syria for earthquake relief. In the United States, our focus is on healthcare, specifically addressing discrepancies and imbalances through AI-driven analysis.
Our commitment to diversity and inclusion centers on fostering digital equality by expanding broadband access, facilitating high-speed internet availability, and promoting digital skills development. Additionally, we are dedicated to reducing carbon footprints and preserving biodiversity. For example, we collaborate with the NOAH organization to identify whales using AI technology and have developed an election propaganda index to expose the influence of fake news. Promising initial experiments using GPT-4 showcase its potential for fake news detection.
ChatGPT will be Empowered to Perform Real-time Website Crawling
While ChatGPT currently cannot crawl websites directly, it is built upon a training set of crawled data up to September 2021. In the near future, the integration of plugins will empower ChatGPT to perform real-time website crawling, enhancing its ability to deliver relevant, up-to-date information, and sophisticated mathematics. This same training set serves as the foundation for the GPT-4 model.
GPT-4 demonstrates remarkable reasoning capabilities, while Bing Chat offers valuable references for verifying news stories. AI encompasses various machine learning algorithms, including computer vision, statistical classifications, and even software that can generate source code. A notable example is the Codex model, a derivative of GPT-3, which excels at efficiently generating source code.
Microsoft has a long-standing interest in AI and is dedicated to making it accessible to a wider audience. The company’s partnership with OpenAI primarily focuses on the democratization of AI models, such as GPT and DALL-E. We have already integrated GPT-3 into Power BI and are actively developing integrations for Copilot across various products, such as Outlook, PowerPoint, Excel, Word, and Teams. Microsoft Graph is a versatile tool for accessing XML-based objects in documents and generating results using GPT algorithms.
Hardware, particularly GPUs, has played a pivotal role in the development of GPT-3. For those interested in experimenting with Generative AI on a very technical level, I recommend Stable Diffusion, which is developed by LMU Munich. GPT-3’s emergence created a buzz, quickly amassing a vast user base and surpassing the growth of services like Uber and TikTok. Sustainability remains a crucial concern, and Microsoft is striving to achieve a CO2-positive status.
Generative AI Models have garnered Criticism due to their Dual-use Nature
Despite its potential, Generative AI models such as GPT-3 have also garnered criticism due to their dual-use nature and potential negative societal repercussions. Some concerns include the possibility of automated hacking, photo manipulation and the spread of fake news (➡️ deepfake disussion on LinkedIn). To ensure responsible AI development, numerous efforts are being undertaken to minimize reported biases in the GPT models. By actively working on refining algorithms and incorporating feedback from users and experts, developers can mitigate potential risks and promote a more ethical and inclusive AI ecosystem.
Moving forward, it is essential to maintain open dialogue and collaboration between AI developers, researchers, policymakers, and users. This collaborative approach will enable us to strike a balance between harnessing the immense potential of AI technologies like GPT and ensuring the protection of society from unintended negative consequences.
GPT-3.5 closely mimics human cognition. However, GPT-4 transcends its forerunner with its remarkable reasoning capabilities and contextual understanding. GPT models leverage tokens to establish and maintain the context of the text, ensuring coherent and relevant output. The GPT-4-32K model boasts an impressive capacity to handle 32,000 tokens, allowing it to process extensive amounts of text efficiently. To preserve the context and ensure the continuity of the generated text, GPT-4 employs various strategies that adapt to different tasks and content types.
GPT-4 Features a Robust Foundation in Common Sense Reasoning
One of GPT-4’s defining features is its robust foundation in common sense reasoning. This attribute significantly contributes to its heightened intelligence, enabling the AI model to generate output that is not only coherent but also demonstrates a deep understanding of the subject matter. As GPT-4 continues to evolve and refine its capabilities, it promises to revolutionize the field of artificial intelligence, expanding the horizons of what AI models can achieve and paving the way for future breakthroughs in the realm of generative AI.
In the near future, advanced tools like ChatGPT will elucidate intricate relationships without requiring us to sift through countless websites and articles, further amplifying the transformative impact of Generative AI.
I appreciate the opportunity to share my insights at the German Chapter of the ACM.
Did you enjoy this GPT-generated Summary of my Talk?
Leveraging GPT-4 to generate a summary of my talk was an exciting experiment, and I have to admit, the results are impressive. GPT was able to provide a brief overview of the key takeaways from my talk.
Now, I would love to hear about your experiences with GPT. What are your experiences with GPT so far? Feel free to share your thoughts in the comments section of this Twitter thread or this LinkedIn post:
With today’s launch of OpenAI’s GPT-4, the next generation of its Large Language Model (LLM), generative AI has entered a new era. This latest model is more advanced and multimodal, meaning GPT-4 can understand and generate responses based on image input as well as traditional text input (see GPT-4 launch livestream).
Generative AI has rapidly gained popularity and awareness in the last few months, making it crucial for businesses to evaluate and implement strategies across a wide range of industries, including e-commerce and healthcare. By automating tasks and creating personalized experiences for users, companies can increase efficiency and productivity in various areas of value creation. Despite being in development for decades, it’s high time for businesses to apply generative AI to their workflows and reap its benefits.
Before you dive into OpenAI GPT-4, let’s take a quick look back at the evolution of generative AI…
The history of generative AI begins in the late 1970s and early 1980s when researchers began developing neural networks that mimicked the structure of the human brain. The idea behind this technology was to assemble a set of neurons that could pass information from one to another with some basic logic, and together the network of neurons could perform complicated tasks. While minimal advances were made in the field, it remained largely dormant until 2010, when Google pioneered deep neural networks that added more data, hardware, and computing resources.
In 2011, Apple launched Siri, the first mass-market speech recognition application. In 2012, Google used the technology to identify cats in YouTube videos, finally reviving the field of neural networks and AI. Both Google and NVIDIA invested heavily in specialized hardware to support neural networks. In 2014, Google acquired DeepMind, which built neural networks for gaming. DeepMind built AlphaGo, which went on to defeat all the top Go players, a pivotal moment because it was one of the first industrial applications of generative AI, which uses computers to generate human-like candidate moves.
OpenAI was founded to democratize AI as a non-profit organization
In 2015, OpenAI was founded to democratize AI and was established as a non-profit organization. In 2019, OpenAI released GPT-2, a large-scale language model capable of producing human-like text. However, GPT-2 sparked controversy because it could produce fake news and disinformation, raising concerns about the ethics of generative AI.
In 2021, OpenAI launched DALL-E, a neural network that can create original, realistic images and art from textual description. It can combine concepts, attributes, and styles in novel ways. A year later, Midjourney was launched by the independent research lab Midjourney. Also in 2022, Stable Diffusion, an open-source machine learning model developed by LMU Munich, was released that can generate images from text, modify images based on text, or fill in details in low-resolution or low-detail images.
OpenAI launched ChatGPT in November 2022 as a fine-tuned version of the GPT-3.5 model. It was developed with a focus on enhancing the model’s ability to process natural language queries and generate relevant responses. The result is an AI-powered chatbot that can engage in meaningful conversations with users, providing information and assistance in real-time. One of the key advantages of ChatGPT is its ability to handle complex queries and provide accurate responses. The model has been trained on a vast corpus of data, allowing it to understand the nuances of natural language and provide contextually relevant responses.
Today’s launch of OpenAI GPT-4 marks a significant milestone in the evolution of generative AI!
This latest model, GPT-4, is capable of answering user queries via text and image input. The multimodal model demonstrates remarkable human-level performance on various professional and academic benchmarks, indicating the potential for widespread adoption and use. One of the most significant features of OpenAI GPT-4 is its ability to understand and process image inputs, providing users with a more interactive and engaging experience.
Users can now receive responses in the form of text output based on image inputs, which is a massive step forward in the evolution of AI. Depending on the model used, a request can use up to 32,768 tokens shared between prompt and completion, which is the equivalent of about 49 pages. If your prompt is 30,000 tokens, your completion can be a maximum of 2,768 tokens.
Bing has already integrated GPT-4 and offers both, chat and compose modes for users to interact with the model. With the integration of GPT-4, Bing has significantly enhanced its capabilities to provide users with more accurate and personalized search results, making it easier for them to find what they are looking for.
The disruptive potential of generative AI is enormous, particularly in the retail industry. The technology can create personalized product recommendations and content, and even generate leads, saving sales teams time and increasing productivity. However, the ethical implications of generative AI cannot be ignored, particularly in the creation of disinformation and fake news.
To sum up, generative AI is here to stay, and companies must evaluate and implement strategies swiftly. As generative AI technology advances, so do the ethical concerns surrounding its use. Therefore, it is critical for companies to proceed with caution and consider the potential consequences of implementing generative AI into their operations.
Are you already using generative AI for a more productive workflow?
What improvement do you expect from OpenAI GPT-4 in this regard? I look forward to reading your ideas in the comments to this LinkedIn post:
Data is a valuable asset that can give businesses a competitive edge and drive growth in today’s digital age. But without a clear and well-defined data strategy, companies risk missing out on the benefits that data provides. To help your business succeed in the digital world, here’s an overview of nine essential elements of a comprehensive data strategy.
Goals and Objectives: Define specific goals and objectives that the company wants to achieve through its data efforts, such as improving customer experiences or optimizing business processes.
Data Sources: Identify the most valuable data types and determine where they will come from, such as internal transaction or customer data and external market research.
Data Management and Storage: Outline how data will be collected, organized, and stored consistently, accurately, and compliantly, with data management tools and technologies.
Data Analysis and Reporting: Define how data will be analyzed and used to inform business decisions, with data visualization tools, dashboards, and reporting systems.
Data Governance: Establish clear roles and responsibilities for data management, guidelines for data use and access, and ensure ethical and regulatory compliance.
Data-driven Culture: Foster a data-driven culture by providing training and resources for data-driven decision making.
Data Security and Privacy: Ensure data is collected, stored, and used securely and in compliance with privacy regulations.
Data Integration and Interoperability: Define how data will be integrated and shared across systems and platforms.
Data Quality and Accuracy: Ensure data is accurate and up-to-date, with processes for data cleansing and enrichment.
A data strategy is a must-have tool for any company that wants to fully realize the benefits of its data. It provides a clear roadmap for data collection, management, and analysis and helps organizations make better use of their data, drive growth, and succeed in today’s digital world. Get more insights and in-depth information by reading the book Decisively Digital (on Amazon).
Manage Cookie Consent
We use cookies to optimize our website and our service.
Functional
Immer aktiv
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.