10,000 Followers on Twitter!

10,000 followers on Twitter!

10,000 followers on Twitter! Thank you everyone for all the fun, joy and support you provide! And thank you to the 150 who joined this week! Totally made my day!

Also thank you to Brandwatch who recently listed me as one of the top Digital Transformation influencer in Germany.

Do you want to track your own Twitter profile? Collect your Twitter stats with IFTTT and the tstats script!

Update 3 Aug 2018: I hit the 11k follower mark on Twitter just a few days after the first German-language Tableau book became available on Amazon and in many local book stores!

Digitale Banken: Welche Digitalisierungstrends bewegen die Finanzbranche?

Eine Person nutzt die Microsoft HoloLens zur Visualisierung von Datenanalysen und Digitalisierungstrends in der Finanzbranche.
Digitalisierungstrends: Die Microsoft HoloLens ermöglicht eine Immersive und interaktive Analyse von Finanz- und Marktdaten mit Argumented Reality (Blockchain-Dashboard).

Jedes Jahr (2015, 2016, 2017 und 2018) stelle ich Digitalisierungstrends vor, die der Finanzbranche ein großes Potenzial bieten. Dabei geht es vor allem um einen Überblick darüber, welche Trends und Technologien zukünftig eine größere Rolle spielen werden oder könnten.

Für eine umfassendere Analyse zur Rolle von Blockchain, Künstlicher Intelligenz und Machine Learning in digitalen Banken empfehle ich meinen vorherigen Blogpost: Digitale Banken: Die Chancen von Blockchain, Künstlicher Intelligenz und Machine Learning.

Im Folgenden habe ich die fünf Digitalisierungstrends identifiziert, die für Banken und Versicherungen in Zukunft besonders spannend sein dürften:

1. Maschinelles Lernen und Künstliche Intelligenz

Maschinelles Lernen und Künstliche Intelligenz transformieren die Finanzbranche. Maschine Learning und Deep Learning werden im Investment Banking angewandt, um Unternehmensbewertungen schneller und zuverlässiger durchzuführen. Mehr Daten denn je können hinzugezogen werden. Eine Gewichtung der Daten erfolgt komplett autonom. Da manuelle Analyse weitgehend entfällt, werden Entscheidungsprozesse drastisch beschleunigt. Investoren, die mit konventionellen Werkzeugen arbeiten, haben das Nachsehen.

Durch Künstliche Intelligenz gesteuerte Chatbots vermitteln den Kunden eine menschlichen-ähnliche Betreuung. Chatbots werden darüber hinaus in existierende Cloud-basierende Assistenten, wie Alexa oder Siri, eingebunden und sind in der Lage mittels Natural Language Processing, auch komplexere Anfragen zu verstehen. Recommender-Systeme liefern maßgeschneiderte Lösungen, die speziell auf die Bedürfnisse der Kunden abgestimmt sind.

2. Internet of Things

Das Internet der Dinge (IoT) revolutioniert die Art und Weise, wie Banken und Versicherungen Daten nutzen. Wearables und Sensoren liefern Echtzeitdaten über den Lebensstil von Kunden, die zur Berechnung individueller Tarife für Finanz- und Versicherungsprodukte herangezogen werden können. Diese Daten fließen in Recommender-Systeme ein, die personalisierte Angebote erstellen. Darüber hinaus ermöglichen IoT-gestützte Lösungen neue Sicherheitsmechanismen, indem sie Anomalien in Verhaltensmustern erkennen und frühzeitig Alarm schlagen.

3. Blockchain und Dezentrale Finanzsysteme (DeFi)

Die Blockchain-Technologie sorgt für sichere, transparente und kostengünstige Transaktionen. Verträge werden als Smart Contracts in der Blockchain gespeichert und automatisch ausgeführt. Dies reduziert den Bedarf an Intermediären und minimiert Fehlerquellen. Dezentrale Finanzsysteme (DeFi) erweitern diesen Ansatz, indem sie traditionelle Finanzprodukte wie Kredite und Versicherungen in offene, zugängliche Plattformen überführen. Banken können DeFi nutzen, um innovative Finanzprodukte zu entwickeln und neue Märkte zu erschließen.

4. Augmented Reality und Virtual Reality

Augmented Reality (AR) und Virtual Reality (VR) ermöglichen neue Formen der Datenvisualisierung und Zusammenarbeit. Lösungen wie Microsoft’s HoloLens schaffen immersive Arbeitsumgebungen, in denen Analysten und Händler Finanzdaten in Echtzeit interaktiv analysieren können. Diese Digitalisierungstrends fördern nicht nur die Zusammenarbeit, sondern eröffnen auch neue Möglichkeiten für Schulungen und Kundeninteraktionen. Kunden können Finanzprodukte virtuell erkunden und so fundiertere Entscheidungen treffen.

5. Automatisierung und Cloud-basierte Services

Die zunehmende Automatisierung von Prozessen und der Einsatz von Cloud-Technologien ermöglichen eine effizientere Verwaltung von Finanzdienstleistungen. Machine-to-Machine-Kommunikation (M2M) und automatisierte Abläufe reduzieren Kosten und verbessern die Geschwindigkeit von Transaktionen. Cloud-basierte Plattformen bieten skalierbare Lösungen für Datenverarbeitung und Sicherheit. Gleichzeitig treiben sie die Integration neuer Technologien wie Quantum Computing voran, die in der Zukunft die Verschlüsselung und Datenanalyse revolutionieren könnten.

Ausblick der Digitalisierungstrends

Die Finanzbranche steht an einem Wendepunkt. Digitale Banken haben die Chance, nicht nur Technologien zu adaptieren, sondern als Wegbereiter einer inklusiveren und effizienteren Finanzwelt aufzutreten. Die Verknüpfung von KI, IoT und Blockchain wird es ermöglichen, personalisierte Finanzprodukte anzubieten, die gleichzeitig sicher und skalierbar sind. Zukünftige Innovationen wie Quantum Computing könnten zudem die Sicherheitsstandards weiter erhöhen und die Datenverarbeitung revolutionieren.

Welcher ist der 6. Digitalisierungstrend?

Helfen Sie den 6. Digitalisierungstrend zu benennen? Nehmen Sie hierzu an der Twitter-Umfrage teil. Selbstverständlich freue ich mich auch über Kommentare und eine spannende Diskussion:

Data Operations: Daten für die Analyse optimal vorbereiten

#dataops: Folgen Sie der Diskussion auf Twitter
#dataops: Folgen Sie der Diskussion auf Twitter

Kürzlich habe ich einige Blog-Posts zum Thema Datenstrategie veröffentlicht. Für viele Unternehmen geht die Entwicklung und Einführung einer Datenstrategie nicht tief genug. Häufig habe ich ähnliches gehört: „So weit ist unser Unternehmen noch gar nicht. Wir haben noch viel operativ vorzubereiten, bevor wir eine Datenstrategie voll umfänglich etablieren können.“

Ich habe in diesen Gesprächen nachgehakt, wo diese grundlegenden Lücken in den Unternehmen bestehen, und entschlossen eine neue Blog-Post-Serie aufzusetzen, um zum Thema Data Operations (#dataops) konkrete und einfach umsetzbare Vorschläge zu geben.

Daten für die Analyse vorbereiten

Eine der wesentlichen Fragen, die sich Datenanalysten immer wieder stellen, lautet: „Gibt es eine Möglichkeit meine Daten für die Verwendung mit Analysewerkzeugen, wie Tableau, optimal vorzubereiten?“

Daten können auf unterschiedliche Arten strukturiert sein. Die meisten neuen Tableau-Anwender erliegen der Versuchung, Tableau mit einem bereits formatierten und voraggregierten Excel-Bericht (siehe Abbildung 1.1) zu verbinden und diesen in Tableau zu visualisieren. Heißt es nicht mit Tableau können Daten jeder Art einfach und intuitiv verwenden werden? Sehr schnell stellt man fest, dass ein solches Vorgehen nicht funktioniert, wie erwartet und sich so auch keine Visualisierungen erstellen lassen.

Abbildung 1.1: Bereits formatierter und voraggregierter Excel-Bericht
Abbildung 1.1: Bereits formatierter und voraggregierter Excel-Bericht

Dieses Szenario, dem viele Einsteiger begegnen, ist nicht ungewöhnlich und tatsächlich ein häufiger Stolperstein bei der Einarbeitung in Tableau, der die Analyse Ihrer Daten erschweren kann.

Die folgenden Punkte zeigen Ihnen Vorschläge zur sauberen Vorbereitung Ihrer Daten anhand des Beispielberichts:

  • Verzichten Sie auf den einleitenden Text („Temperaturmessung zum Monatsbeginn“).
  • Überführen Sie hierarchische Überschriften („Frankfurt“, „Berlin“) auf eine Spalteninformation (neue Spalte „Ort“).
  • Pivotisieren Sie Daten von einer „weiten“ Kreuztabelle mit Variablen in Spalten („Früh“, „Mittag“, „Abend“) in eine „lange“ Tabelle, die die Variablen stets in den Zeilen trägt (in diesem Beispiel die Uhrzeit).
  • Nutzen Sie vollständige Datums- und ggf. Zeitformate („01.04.2018 06:00“) anstatt z.B. nur den Monatsnamen („April“).
  • Überprüfen Sie, dass Zahlen im Zahlenformat und nicht im Textformat gespeichert sind.
  • Verzichten Sie voraggregierte Daten („Durchschnitt“, „Gesamtdurchschnitt“).
  • Entfernen Sie leere Zeilen.
  • Achten Sie darauf, dass jede Spate eine aussagekräftige Spaltenüberschrift trägt.

Haben Sie diese Vorschläge befolgt, ist aus Ihrer „weiten“ Kreuztabelle nun eine „lange“ Zeilen-basierte Tabelle geworden, und damit die perfekte Basis zur umfangreichen Datenanalyse (siehe Abbildung 1.2).

Abbildung 1.2: Zur Datenanalyse geeignete „lange Tabelle“ ohne Aggregationen
Abbildung 1.2: Zur Datenanalyse geeignete „lange Tabelle“ ohne Aggregationen

Dieser Beitrag ist der dritte Teil der Data-Operations-Serie:

Teil 1: Daten für die Analyse optimal vorbereiten
Teil 2: Wann sollten Sie Datenextrakte und wann Live-Verbindungen verwenden
Teil 3: Wie Sie die Performance Ihrer Datenanalyse und Dashboards steigern

Außerdem ist dieser Blog-Post ein Auszug aus dem Buch „Datenvisualisierung mit Tableau„, das am 31. Juli 2018 erscheinen wird:

Leadership: Stagnation Kills Your Business, 3 Times

Petronas Twin Towers
Petronas Twin Towers held the title of the tallest building in the world for six years (Flickr)

Your business has been thriving, and the pipeline is well filled with work? Don’t get comfortable too soon. Stagnation kicks in fast nowadays, and kills your business‘ innovation, its growth, and its people.

1. Innovation 

The speed of transformation that we are currently witnessing is challenging all of us to think differently. Every industry can be disrupted, there is no safe habour. So we need to deliver our products and services in a way that is relevant today, not yesterday.

Minor product iterations do not work forever. We need to prepare product revolutions, not just iterations on what we were selling since ten years. Establishing an innovation lab engages our employees to think in innovative ways and lift our business to new heights.

2. Growth

We need to adjust our business development plan to drive business growth. This should not be a static document. Customer and market definition are changing fast and we need to adopt this in our sales strategy and in our product development.

This does not work without data. Therefore we need to implement a data strategy. Our data strategy guides our entire business how to collect and analyze data, and how to generate the insights that we use for our decisions. If we do not take advantage of data, our competition will do.

3. People

Sushi Google DoodleIt is essential for leaders to recognize that you cannot possibly manage everything. We need to employ great people. But recruiting is not the end. We need to keep your talents, empower them, and motivate them to take initiative in their roles. Stagnation will rotate employees out of the company.

Offering free sushi and laundry service might impress our new hires from university. Experienced and independent employees will be more interested in career perspectives. We should establish personal development plans for everyone, not just for the designated managers.

Although it is important for leaders to set such a career framework, we should not forget to invest in your employees‘ training. Both, hard skills (technical) and soft skills (non-technical), are mandatory because they each play very important roles in the development of our employees.

In Summary

Yesterday’s innovations are tomorrow’s commodities. We need to invest in innovations, otherwise we will face disruptive competition. Creating insights from data is important for the iterative adjustments on our business development plan. Offering personal development plans and proper training avoids stagnation for your employees, which is causing brain drain.

This post is also published on LinkedIn.

How to Diversify a Long-term Crypto Portfolio

Close-up of a golden Bitcoin, representing digital currency and its role in building a diversified crypto portfolio for long-term investments.
Bitcoin coin symbolizing cryptocurrency investments and crypto portfolio strategies.

Last Friday, it was my pleasure to give an Executive Talk at the Frankfurt School of Finance & Management. While the focus of my presentation was Digital Transformation, plenty of the questions raised by the audience were about cryptocurrencies and how to build a diversified crypto portfolio.

Frankfurt School (@FrankfurtSchool) highlighted the session on Twitter, noting: „Our #FSEMBA students are especially interested in the use cases of today’s Executive Talk.

After receiving follow-up emails from participants seeking guidance, I decided to expand on the topic in this blog post. For additional insights into blockchain and artificial intelligence trends, I recommend reading my related post: Digital Banking: The Opportunities of Blockchain, AI, and Machine Learning.

Why Invest in Cryptocurrencies?

The cryptocurrency market has shown explosive growth, with returns exceeding 1200% since early 2017. Finding this kind of return on investment (ROI) elsewhere is challenging. For example, a $500 investment in January 2017 could have grown to $6000 within a year!

This guide provides a framework for building a long-term cryptocurrency portfolio based on diversification and risk management principles.

Crypto Portfolio Allocation Strategy

I recommend balancing your portfolio with up to five coins in the Top 10 market cap, making up 70-85% of your investment, and complementing it with smaller altcoins in promising projects for the remaining 15-30%. This mirrors Timothy Chong’s analysis of Markowitz-style crypto optimization.

Top Cryptocurrencies for Long-term Investment

Bitcoin (40%)

Bitcoin (BTC) remains the foundation of most crypto portfolios, often referred to as „digital gold.“ It is considered a safer long-term investment due to its market dominance and steady growth.

  • Price (as of time of writing): $16,708
  • Gain Over Past Year: 2,170%
  • Market Cap: $278 B (#1)
  • Circulating Supply: 16,734,237 BTC

Ethereum (30%)

Ethereum (ETH) is the leading platform for decentralized applications (dApps) and smart contracts, driving significant innovation in decentralized finance (DeFi).

  • Price (as of time of writing): $470
  • Gain Over Past Year: 5740%
  • Market Cap: $45 B (#2)
  • Circulating Supply: 96,272,074 ETH

Litecoin (10%)

Litecoin (LTC) is often referred to as the „silver“ to Bitcoin’s „gold.“ Its faster block generation time (2.5 minutes) and lower transaction fees make it ideal for payments.

  • Price (as of time of writing): $170
  • Gain Over Past Year: 4690%
  • Market Cap: $10 B (#5)
  • Circulating Supply: 54,255,483 LTC

Ripple (10%)

Ripple (XRP) focuses on enabling fast and low-cost international money transfers. It has gained traction among financial institutions for cross-border payments.

  • Price (as of time of writing): $0.25
  • Gain Over Past Year: 3500%
  • Market Cap: $9.6 B (#4)
  • Circulating Supply: 38,739,144,847 XRP

Monero (10%)

Monero (XMR) is a privacy-focused cryptocurrency that uses advanced cryptography to ensure transaction anonymity. It has become a go-to option for users seeking privacy.

  • Price (as of time of writing): $264
  • Gain Over Past Year: 3370%
  • Market Cap: $4 B (#9)
  • Circulating Supply: 15,449,232 XMR

Outlook

As cryptocurrencies continue to evolve, they are likely to become the backbone of decentralized economies. Technologies like smart contracts and blockchain interoperability will pave the way for a seamless global financial ecosystem. In the next decade, we may see tokenized assets replacing traditional stocks and bonds, making financial services more accessible worldwide.

Additionally, privacy-focused coins like Monero will grow in importance as regulators impose stricter oversight, driving demand for anonymous transactions.

Quantum-resistant blockchains could also emerge as a critical innovation, securing cryptocurrencies against future quantum computing threats. The integration of artificial intelligence in blockchain governance may further revolutionize decision-making processes in decentralized networks.

FAQs About Crypto Portfolios

Q: Isn’t it too late to start buying cryptocurrencies now?
A: No. With growing adoption, Bitcoin could still reach 100,000 EUR/BTC and beyond in the coming years.

Q: Where can I buy Bitcoin, Ethereum, and other coins?
A: Coinbase and Binance are popular exchanges for buying and selling cryptocurrencies. Sign up on Coinbase now and receive $10 in BTC!

Q: How can I securely store my cryptocurrencies?
A: Use hardware wallets like the Ledger Nano S or create paper wallets for offline storage.

Final Thoughts on Building a Crypto Portfolio

Building a diversified cryptocurrency portfolio requires careful planning and research. The examples shared in this guide highlight promising projects and balanced strategies to help manage risks.

I welcome your thoughts and questions in the comments or on Twitter:



Disclaimer: This blog post is for informational purposes only and does not constitute investment advice.