Celebrating 5 Years at Microsoft: Reflecting on a Journey of Innovation and Impact

Alexander Loth stands on stage at a Microsoft event, delivering a presentation. The backdrop features a quote from Satya Nadella, "We empower every person and every organization on the planet to achieve more." The audience is visible in the foreground, attentively watching the presentation. (photo by Microsoft Corp.)
Me presenting on stage at a Microsoft event with Satya Nadella’s quote, „We empower every person and every organization on the planet to achieve more,“ displayed in the background.

Today marks a significant milestone in my career – 5 years at Microsoft. It’s been an incredible journey, filled with growth, innovation, and a sense of community that I deeply cherish.

As I look back, I am filled with gratitude for the experiences and lessons learned along the way:

1. A Remarkably Supportive and Collaborative Culture

From my very first day at Microsoft, I was welcomed into a culture that values collaboration and support. The camaraderie among the team members is truly special. Whether it’s working on challenging projects or brainstorming new ideas, there’s always a sense of unity and mutual respect. This supportive environment has been a cornerstone of my growth and success here.

2. AI: The Heartbeat of Our Work

At Microsoft, AI isn’t just a buzzword – it’s the heartbeat of our work. I’ve had the privilege of witnessing firsthand how AI can drive transformative change across various industries. The innovative solutions we develop are not only cutting-edge but also have a profound impact on the world. It’s exhilarating to be part of a team that’s pushing the boundaries of what’s possible with AI.

3. Commitment to Responsible AI

One of the aspects I admire most about Microsoft is our unwavering commitment to responsible AI. We are dedicated to creating technology with integrity and humility. Every team, project, and initiative reflects this dedication. The emphasis on ethical AI development ensures that we are building a future where technology serves humanity positively and equitably.

4. Tech for Social Impact: Shaping a Better Future

Working with Tech for Social Impact (TSI) has been one of the most rewarding experiences of my career. We are not just envisioning a better future; we are actively shaping it. Our ambitious vision for Copilot is just the beginning of a transformative journey. The work we do at TSI has the potential to create significant positive change, and I am proud to be part of this mission.

5. Continuous Learning and Innovation

Continuous learning and innovation are at the core of Microsoft’s success. The opportunities for growth are endless, from the exciting projects in the Microsoft Garage to the numerous volunteering initiatives. Staying curious and constantly seeking to learn new things is encouraged and celebrated. This culture of continuous improvement is a driving force behind our collective achievements.

A big thank you to the mentors, managers, and colleagues who have been incredibly supportive. I’m immensely proud of our collective achievements and can’t wait to see what the future holds! Here’s to many more years of innovation, impact, and a shared vision of creating technology that empowers everyone.


If you’d like to stay updated on my journey and insights on AI, digital transformation, and more, follow me on LinkedIn, Twitter, and Instagram.

„Celebrating 5 Years at Microsoft: Reflecting on a Journey of Innovation and Impact“ weiterlesen

KI Bücher: „KI für Content Creation“ auf Platz 1 der Amazon-Neuerscheinungen in Künstliche Intelligenz

KI Bücher: "KI für Content Creation" auf Platz 1 der Amazon-Neuerscheinungen in Künstliche Intelligenz; gefolgt von "Alles überall auf einmal" von Miriam Meckel und Léa Steinacker, sowie von "The Coming Wave" von Mustafa Suleyman (Screenshot)
KI Bücher: KI für Content Creation auf Platz 1 der Amazon-Neuerscheinungen in Künstliche Intelligenz; gefolgt von Alles überall auf einmal von Miriam Meckel und Léa Steinacker, sowie von The Coming Wave von Mustafa Suleyman (Screenshot)

Vielen Dank an alle, die geholfen haben, dass es mein neues Buch KI für Content Creation auf Platz 1 der Neuerscheinungen bei Amazon in der Kategorie Künstliche Intelligenz geschafft hat!

Ein kurzer Rückblick

Alexander Loth bei Antiproton Decelerator am CERN
2009: Antiproton Decelerator am CERN

2009: Als ich meine Diplomarbeit zu Machine Learning in der Kernphysik am CERN verfasste, war die Vorstellung, dass Künstliche Intelligenz eines Tages nicht nur in spezialisierten Forschungseinrichtungen, sondern in jedem Aspekt unseres Alltags präsent sein würde, noch reine Science-Fiction.

2021: Mit dem Buch Decisively Digital habe ich einen umfassenden Einblick in die Anwendung von KI in Unternehmen geliefert und zahlreiche Thought Leader zu deren Einschätzung interviewt. Auch hier war KI noch nicht allgegenwärtig.

Alexander Loth mit den KI-Büchern "Decisively Digital" und "KI für Content Creation"
2024: Bücher zu KI

2022/23: Die Vorstellung von ChatGPT hat alles verändert. Plötzlich hatten alle Zugang zu einer Künstlichen Intelligenz – ganz ohne Programmierkenntnisse. Kurz darauf begann ich mit der Arbeit an KI für Content Creation, dem KI-Buch für alle – ursprünglich gar nicht als Buch gedacht, sondern als Sammlung eigener Erfahrungen.

Das KI-Buch für Alle

Heute freue ich mich zu sehen, dass dieses KI-Buch für alle, Platz 1 der Neuerscheinungen bei Amazon erreicht hat. 2009 hätte ich nicht im Traum daran gedacht, dass Künstliche Intelligenz mal dermaßen in unserer Alltag einzieht.

Danke an alle, die mich auf dem Weg begleitet haben. Es waren über die Jahre unfassbar viele Gespräche – unmöglich hier alle zu taggen – aber ein paar müssen sein (chronologisch aufsteigend, via LinkedIn):

„KI Bücher: „KI für Content Creation“ auf Platz 1 der Amazon-Neuerscheinungen in Künstliche Intelligenz“ weiterlesen

Apple Keynote 2023: iPhone 15 Pro, Apple Watch Ultra 2 und Spatial Video – Neue Folge von “Die Digitalisierung und Wir”

Apple Keynote 2023: iPhone 15 Pro, Apple Watch Ultra 2 und Spatial Video – Neue Folge von “Die Digitalisierung und Wir”
Apple Keynote 2023: iPhone 15 Pro, Apple Watch Ultra 2 und Spatial Video – Neue Folge von “Die Digitalisierung und Wir”

In unserer neuesten Folge von Die Digitalisierung und Wir sprechen wir über die Apple Keynote 2023, und ganz besonders interessiert uns das Thema iPhone Spatial Video. Wir haben die Folge gestern Abend direkt nach dem Event aufgenommen. Diese Folge ist besonders, da sie unser 10. Podcast-Jubiläum markiert! Ebenfalls eine großartige Fortsetzung unserer letzten Podcast-Folgen, in denen wir über die rasante Entwicklung der Digitalisierung gesprochen haben. Und wie könnte man das besser machen als mit den neuesten Technologie-Updates direkt von Apple?

iPhone 15 Pro: Low-Light und High-Res zu 24 Megapixel kombiniert

iPhone 15 Pro Max Kamera mit 5x-Optik (eq. 120mm)
iPhone 15 Pro Max Kamera mit 5x-Optik (eq. 120mm)

Kommen wir gleich zur Sache: Das iPhone 15 Pro ist ein echtes Monster von einem Telefon, vor allem für Fotografie-Enthusiasten. Es hat den neuen A17-Chip auf 3nm-Basis, 8 GB RAM und Wifi 6E, aber der eigentliche Star der Show ist das Kamerasystem. Hier erfährst du, was du über die Kamerafunktionen des iPhone 15 Pro wissen musst.

Das iPhone 15 Pro hat eine 48-Megapixel-Hauptkamera, die zwischen drei Brennweiten umschalten kann: 24 mm, 28 mm und 35 mm. Das gibt dir mehr Flexibilität und Kreativität beim Komponieren deiner Aufnahmen, egal ob du eine Weitwinkel-, Standard- oder Porträtperspektive möchtest. Die Hauptkamera verfügt außerdem über einen größeren Sensor, der mehr Licht einfängt und damit ideal für Situationen mit wenig Licht ist. Mit dem neuen Hochauflösungsmodus lassen sich außerdem beeindruckende Fotos mit 24 Megapixeln aufnehmen, die aus Low-Light und High-Res-Aufnahmen kombiniert werden.

iPhone 15 Pro Max: 5x-Optik, aber fehlende Periskop-Zoomkamera

Das iPhone 15 Pro Max geht noch einen Schritt weiter und bietet ein neues Teleobjektiv mit 5-fachem optischem Zoom (statt 3-fach bei den Vorgängermodellen). Das bedeutet, dass du näher an dein Motiv herangehen kannst, ohne an Bildqualität zu verlieren. Das Teleobjektiv verwendet außerdem ein Tetraprismen-Design, das die Größe und das Gewicht des Objektivs reduziert, so dass es kompakter ist und besser in der Hand liegt. Mit dem 5-fachen optischen Zoom können Sie auch einen bis zu 25-fachen digitalen Zoom erreichen, was für ein iPhone beeindruckend ist, aber immer noch nicht so gut wie bei einigen Mitbewerbern.

Sowohl das iPhone 15 Pro als auch das Pro Max verfügen über eine verbesserte 13-mm-Ultraweitwinkelkamera mit einer schnelleren Blende und einem besseren Autofokussystem. Die Ultraweitwinkelkamera eignet sich hervorragend für die Aufnahme von Landschaften, Architektur und Gruppenbildern. Sie unterstützt auch die Makrofotografie und ermöglicht die Fokussierung auf Objekte, die nur 2 cm entfernt sind. Darüber hinaus verfügen beide Modelle über die optische Bildstabilisierung der zweiten Generation mit Sensorverschiebung, die Kameraverwacklungen reduziert und die Leistung bei schlechten Lichtverhältnissen verbessert.

Was beim iPhone 15 Pro Max allerdings fehlte, war eine Periskop-Zoomkamera. Es wurde gemunkelt, dass diese Kamera im Gerät enthalten sein würde, aber sie wurde nicht eingebaut. Eine Periskop-Zoom-Kamera hätte einen noch größeren optischen Zoom ermöglicht, möglicherweise bis zu 10x oder mehr. Stattdessen hat das iPhone 15 Pro Max ein festes 5fach-Objektiv, dessen Brennweite sich nicht ändern lässt.

Machine Learning und KI

Machine Learning spielt eine immer größere Rolle in der Entwicklung von Apple-Produkten. Im iPhone 15 erkennt das Gerät jetzt automatisch, ob man ein Porträt aufnehmen möchte und schaltet in den Porträtmodus. Diese automatische Erkennung funktioniert sogar mit Haustieren wie Hunden und Katzen, und ermöglicht nachträgliche Anpassungen an der Tiefenschärfe und am Fokuspunkt.

iPhone Spatial Video und Mixed Reality

„Apple Keynote 2023: iPhone 15 Pro, Apple Watch Ultra 2 und Spatial Video – Neue Folge von “Die Digitalisierung und Wir”“ weiterlesen

The Rise of Generative AI: Revolutionizing Innovation and Enhancing Human Collaboration

Alexander Loth speaking at German Chapter of the Association for Computing Machinery (ACM) on March 24, 2023. Title of the presentation: "The Rise of Generative AI".
The Rise of Generative AI (photo by Bernd Vellguth)

Last week I had the pleasure of presenting a talk for the German Chapter of the Association for Computing Machinery (ACM). The session sparked lively discussions and elicited numerous thought-provoking questions from our engaged audience.

Following the talk, I was inspired by a conversation to leverage the power of GPT-4 and create an automatically generated summary of the Microsoft Teams transcript. This approach not only streamlines information sharing but also showcases the practical applications of advanced AI technology.

Below, I will share the key insights generated by GPT-4 and also include some captivating images from the event:


Decisively Digital: AI’s Impact on Society

In my talk, I drew inspiration from my book Decisively Digital, which discusses the impact of AI on society. I shared about the innovative projects underway at Microsoft’s AI for Good Lab. In light of GPT-4’s recent launch, I also highlighted our mission to leverage technology to benefit humanity.

Alexander Loth presents his book Decisively Digital, which also discusses Generative AI.
AI’s impact on society is discussed in Decisively Digital: From Creating a Culture to Designing Strategy. John Wiley & Sons. (photo by Gerhard Müller)

By harnessing Generative AI, we can stimulate the creation of innovative ideas and accelerate the pace of advancement. This cutting-edge technology is already transforming industries by streamlining drug development, expediting material design, and inspiring novel hypotheses. AI’s ability to identify patterns in vast datasets empowers humans to uncover insights that might have gone unnoticed.

Generative AI can Augment our Thinking

For instance, researchers have employed machine learning to predict chemical combinations with the potential to improve car batteries, ultimately identifying promising candidates for real-world testing. AI can efficiently sift through and analyze extensive information from diverse sources, filtering, grouping, and prioritizing relevant data. It can also generate knowledge graphs that reveal associations between seemingly unrelated data points, which can be invaluable for drug research, discovering novel therapies, and minimizing side effects.

„Now is the time to explore how Generative AI can augment our thinking and facilitate more meaningful interactions with others.“

Alexander Loth

At the AI for Good Lab, we are currently employing satellite imagery and generative AI models for damage assessment in Ukraine, with similar initiatives taking place in Turkey and Syria for earthquake relief. In the United States, our focus is on healthcare, specifically addressing discrepancies and imbalances through AI-driven analysis.

Our commitment to diversity and inclusion centers on fostering digital equality by expanding broadband access, facilitating high-speed internet availability, and promoting digital skills development. Additionally, we are dedicated to reducing carbon footprints and preserving biodiversity. For example, we collaborate with the NOAH organization to identify whales using AI technology and have developed an election propaganda index to expose the influence of fake news. Promising initial experiments using GPT-4 showcase its potential for fake news detection.

Alexander Loth: "We live in a rapidly changing world, facing big challenges."
„We live in a rapidly changing world, facing big challenges.“ (photo by Gerhard Müller)

ChatGPT will be Empowered to Perform Real-time Website Crawling

While ChatGPT currently cannot crawl websites directly, it is built upon a training set of crawled data up to September 2021. In the near future, the integration of plugins will empower ChatGPT to perform real-time website crawling, enhancing its ability to deliver relevant, up-to-date information, and sophisticated mathematics. This same training set serves as the foundation for the GPT-4 model.

GPT-4 demonstrates remarkable reasoning capabilities, while Bing Chat offers valuable references for verifying news stories. AI encompasses various machine learning algorithms, including computer vision, statistical classifications, and even software that can generate source code. A notable example is the Codex model, a derivative of GPT-3, which excels at efficiently generating source code.

Microsoft has a long-standing interest in AI and is dedicated to making it accessible to a wider audience. The company’s partnership with OpenAI primarily focuses on the democratization of AI models, such as GPT and DALL-E. We have already integrated GPT-3 into Power BI and are actively developing integrations for Copilot across various products, such as Outlook, PowerPoint, Excel, Word, and Teams. Microsoft Graph is a versatile tool for accessing XML-based objects in documents and generating results using GPT algorithms.

Hardware, particularly GPUs, has played a pivotal role in the development of GPT-3. For those interested in experimenting with Generative AI on a very technical level, I recommend Stable Diffusion, which is developed by LMU Munich. GPT-3’s emergence created a buzz, quickly amassing a vast user base and surpassing the growth of services like Uber and TikTok. Sustainability remains a crucial concern, and Microsoft is striving to achieve a CO2-positive status.

Generative AI Models have garnered Criticism due to their Dual-use Nature

Despite its potential, Generative AI models such as GPT-3 have also garnered criticism due to their dual-use nature and potential negative societal repercussions. Some concerns include the possibility of automated hacking, photo manipulation and the spread of fake news (➡️ deepfake disussion on LinkedIn). To ensure responsible AI development, numerous efforts are being undertaken to minimize reported biases in the GPT models. By actively working on refining algorithms and incorporating feedback from users and experts, developers can mitigate potential risks and promote a more ethical and inclusive AI ecosystem.

Moving forward, it is essential to maintain open dialogue and collaboration between AI developers, researchers, policymakers, and users. This collaborative approach will enable us to strike a balance between harnessing the immense potential of AI technologies like GPT and ensuring the protection of society from unintended negative consequences.

Alexander Loth discusses Microsoft's responsible AI principles: fairness, reliability and safety, privacy and security, and inclusiveness, underpinned by transparency and accountability, which also apply to Generative AI.
Microsoft‘s responsible AI principles: fairness, reliability & safety, privacy & security, and inclusiveness, underpinned by transparency and accountability. (photo by Gerhard Müller)

GPT-3.5 closely mimics human cognition. However, GPT-4 transcends its forerunner with its remarkable reasoning capabilities and contextual understanding. GPT models leverage tokens to establish and maintain the context of the text, ensuring coherent and relevant output. The GPT-4-32K model boasts an impressive capacity to handle 32,000 tokens, allowing it to process extensive amounts of text efficiently. To preserve the context and ensure the continuity of the generated text, GPT-4 employs various strategies that adapt to different tasks and content types.

GPT-4 Features a Robust Foundation in Common Sense Reasoning

One of GPT-4’s defining features is its robust foundation in common sense reasoning. This attribute significantly contributes to its heightened intelligence, enabling the AI model to generate output that is not only coherent but also demonstrates a deep understanding of the subject matter. As GPT-4 continues to evolve and refine its capabilities, it promises to revolutionize the field of artificial intelligence, expanding the horizons of what AI models can achieve and paving the way for future breakthroughs in the realm of generative AI.

Comparisons between GPT-4 and GPT-3 show the superior performance of the former in various tasks. Finally, I will present the results of my live Twitter poll asking the audience about the feasibility of achieving Artificial General Intelligence (AGI). Nearly half of the respondents are of the opinion that AGI is achievable within the next five years.

Alexander Loth discussing the results of the live Twitter survey: 47.8% predict the emergence of AGI is possible within the next 5 years
Results of the live Twitter survey: 47.8% predict the emergence of AGI is possible within the next 5 years (photo by Bernd Vellguth)

In the near future, advanced tools like ChatGPT will elucidate intricate relationships without requiring us to sift through countless websites and articles, further amplifying the transformative impact of Generative AI.

I appreciate the opportunity to share my insights at the German Chapter of the ACM.


The slides of my talk are available on ResearchGate.

Did you enjoy this GPT-generated Summary of my Talk?

Leveraging GPT-4 to generate a summary of my talk was an exciting experiment, and I have to admit, the results are impressive. GPT was able to provide a brief overview of the key takeaways from my talk.

Now, I would love to hear about your experiences with GPT. What are your experiences with GPT so far? Feel free to share your thoughts in the comments section of this Twitter thread or this LinkedIn post:

„The Rise of Generative AI: Revolutionizing Innovation and Enhancing Human Collaboration“ weiterlesen

GPT-4 Launches Today: The Rise of Generative AI from Neural Networks to DeepMind and OpenAI

OpenAI GPT-4 launch illustrated with Stable Diffusion (CC BY-SA 4.0)
OpenAI GPT-4 launch illustrated with Stable Diffusion (CC BY-SA 4.0)

With today’s launch of OpenAI’s GPT-4, the next generation of its Large Language Model (LLM), generative AI has entered a new era. This latest model is more advanced and multimodal, meaning GPT-4 can understand and generate responses based on image input as well as traditional text input (see GPT-4 launch livestream).

Generative AI has rapidly gained popularity and awareness in the last few months, making it crucial for businesses to evaluate and implement strategies across a wide range of industries, including e-commerce and healthcare. By automating tasks and creating personalized experiences for users, companies can increase efficiency and productivity in various areas of value creation. Despite being in development for decades, it’s high time for businesses to apply generative AI to their workflows and reap its benefits.

Before you dive into OpenAI GPT-4, let’s take a quick look back at the evolution of generative AI…

The history of generative AI begins in the late 1970s and early 1980s when researchers began developing neural networks that mimicked the structure of the human brain. The idea behind this technology was to assemble a set of neurons that could pass information from one to another with some basic logic, and together the network of neurons could perform complicated tasks. While minimal advances were made in the field, it remained largely dormant until 2010, when Google pioneered deep neural networks that added more data, hardware, and computing resources.

In 2011, Apple launched Siri, the first mass-market speech recognition application. In 2012, Google used the technology to identify cats in YouTube videos, finally reviving the field of neural networks and AI. Both Google and NVIDIA invested heavily in specialized hardware to support neural networks. In 2014, Google acquired DeepMind, which built neural networks for gaming. DeepMind built AlphaGo, which went on to defeat all the top Go players, a pivotal moment because it was one of the first industrial applications of generative AI, which uses computers to generate human-like candidate moves.

OpenAI was founded to democratize AI as a non-profit organization

In 2015, OpenAI was founded to democratize AI and was established as a non-profit organization. In 2019, OpenAI released GPT-2, a large-scale language model capable of producing human-like text. However, GPT-2 sparked controversy because it could produce fake news and disinformation, raising concerns about the ethics of generative AI.

In 2021, OpenAI launched DALL-E, a neural network that can create original, realistic images and art from textual description. It can combine concepts, attributes, and styles in novel ways. A year later, Midjourney was launched by the independent research lab Midjourney. Also in 2022, Stable Diffusion, an open-source machine learning model developed by LMU Munich, was released that can generate images from text, modify images based on text, or fill in details in low-resolution or low-detail images.

OpenAI launched ChatGPT in November 2022 as a fine-tuned version of the GPT-3.5 model. It was developed with a focus on enhancing the model’s ability to process natural language queries and generate relevant responses. The result is an AI-powered chatbot that can engage in meaningful conversations with users, providing information and assistance in real-time. One of the key advantages of ChatGPT is its ability to handle complex queries and provide accurate responses. The model has been trained on a vast corpus of data, allowing it to understand the nuances of natural language and provide contextually relevant responses.

Today’s launch of OpenAI GPT-4 marks a significant milestone in the evolution of generative AI!

This latest model, GPT-4, is capable of answering user queries via text and image input. The multimodal model demonstrates remarkable human-level performance on various professional and academic benchmarks, indicating the potential for widespread adoption and use. One of the most significant features of OpenAI GPT-4 is its ability to understand and process image inputs, providing users with a more interactive and engaging experience.

Users can now receive responses in the form of text output based on image inputs, which is a massive step forward in the evolution of AI. Depending on the model used, a request can use up to 32,768 tokens shared between prompt and completion, which is the equivalent of about 49 pages. If your prompt is 30,000 tokens, your completion can be a maximum of 2,768 tokens.

Token limitations of GPT models with real-world scenarios
Token limitations of GPT models with real-world scenarios

Bing has already integrated GPT-4 and offers both, chat and compose modes for users to interact with the model. With the integration of GPT-4, Bing has significantly enhanced its capabilities to provide users with more accurate and personalized search results, making it easier for them to find what they are looking for.

The disruptive potential of generative AI is enormous, particularly in the retail industry. The technology can create personalized product recommendations and content, and even generate leads, saving sales teams time and increasing productivity. However, the ethical implications of generative AI cannot be ignored, particularly in the creation of disinformation and fake news.

To sum up, generative AI is here to stay, and companies must evaluate and implement strategies swiftly. As generative AI technology advances, so do the ethical concerns surrounding its use. Therefore, it is critical for companies to proceed with caution and consider the potential consequences of implementing generative AI into their operations.

Are you already using generative AI for a more productive workflow?

What improvement do you expect from OpenAI GPT-4 in this regard? I look forward to reading your ideas in the comments to this LinkedIn post:

„GPT-4 Launches Today: The Rise of Generative AI from Neural Networks to DeepMind and OpenAI“ weiterlesen