Digitale Banken: Welche Digitalisierungstrends bewegen die Finanzbranche?

Eine Person nutzt die Microsoft HoloLens zur Visualisierung von Datenanalysen und Digitalisierungstrends in der Finanzbranche.
Digitalisierungstrends: Die Microsoft HoloLens ermöglicht eine Immersive und interaktive Analyse von Finanz- und Marktdaten mit Argumented Reality (Blockchain-Dashboard).

Jedes Jahr (2015, 2016, 2017 und 2018) stelle ich Digitalisierungstrends vor, die der Finanzbranche ein großes Potenzial bieten. Dabei geht es vor allem um einen Überblick darüber, welche Trends und Technologien zukünftig eine größere Rolle spielen werden oder könnten.

Für eine umfassendere Analyse zur Rolle von Blockchain, Künstlicher Intelligenz und Machine Learning in digitalen Banken empfehle ich meinen vorherigen Blogpost: Digitale Banken: Die Chancen von Blockchain, Künstlicher Intelligenz und Machine Learning.

Im Folgenden habe ich die fünf Digitalisierungstrends identifiziert, die für Banken und Versicherungen in Zukunft besonders spannend sein dürften:

1. Maschinelles Lernen und Künstliche Intelligenz

Maschinelles Lernen und Künstliche Intelligenz transformieren die Finanzbranche. Maschine Learning und Deep Learning werden im Investment Banking angewandt, um Unternehmensbewertungen schneller und zuverlässiger durchzuführen. Mehr Daten denn je können hinzugezogen werden. Eine Gewichtung der Daten erfolgt komplett autonom. Da manuelle Analyse weitgehend entfällt, werden Entscheidungsprozesse drastisch beschleunigt. Investoren, die mit konventionellen Werkzeugen arbeiten, haben das Nachsehen.

Durch Künstliche Intelligenz gesteuerte Chatbots vermitteln den Kunden eine menschlichen-ähnliche Betreuung. Chatbots werden darüber hinaus in existierende Cloud-basierende Assistenten, wie Alexa oder Siri, eingebunden und sind in der Lage mittels Natural Language Processing, auch komplexere Anfragen zu verstehen. Recommender-Systeme liefern maßgeschneiderte Lösungen, die speziell auf die Bedürfnisse der Kunden abgestimmt sind.

2. Internet of Things

Das Internet der Dinge (IoT) revolutioniert die Art und Weise, wie Banken und Versicherungen Daten nutzen. Wearables und Sensoren liefern Echtzeitdaten über den Lebensstil von Kunden, die zur Berechnung individueller Tarife für Finanz- und Versicherungsprodukte herangezogen werden können. Diese Daten fließen in Recommender-Systeme ein, die personalisierte Angebote erstellen. Darüber hinaus ermöglichen IoT-gestützte Lösungen neue Sicherheitsmechanismen, indem sie Anomalien in Verhaltensmustern erkennen und frühzeitig Alarm schlagen.

3. Blockchain und Dezentrale Finanzsysteme (DeFi)

Die Blockchain-Technologie sorgt für sichere, transparente und kostengünstige Transaktionen. Verträge werden als Smart Contracts in der Blockchain gespeichert und automatisch ausgeführt. Dies reduziert den Bedarf an Intermediären und minimiert Fehlerquellen. Dezentrale Finanzsysteme (DeFi) erweitern diesen Ansatz, indem sie traditionelle Finanzprodukte wie Kredite und Versicherungen in offene, zugängliche Plattformen überführen. Banken können DeFi nutzen, um innovative Finanzprodukte zu entwickeln und neue Märkte zu erschließen.

4. Augmented Reality und Virtual Reality

Augmented Reality (AR) und Virtual Reality (VR) ermöglichen neue Formen der Datenvisualisierung und Zusammenarbeit. Lösungen wie Microsoft’s HoloLens schaffen immersive Arbeitsumgebungen, in denen Analysten und Händler Finanzdaten in Echtzeit interaktiv analysieren können. Diese Digitalisierungstrends fördern nicht nur die Zusammenarbeit, sondern eröffnen auch neue Möglichkeiten für Schulungen und Kundeninteraktionen. Kunden können Finanzprodukte virtuell erkunden und so fundiertere Entscheidungen treffen.

5. Automatisierung und Cloud-basierte Services

Die zunehmende Automatisierung von Prozessen und der Einsatz von Cloud-Technologien ermöglichen eine effizientere Verwaltung von Finanzdienstleistungen. Machine-to-Machine-Kommunikation (M2M) und automatisierte Abläufe reduzieren Kosten und verbessern die Geschwindigkeit von Transaktionen. Cloud-basierte Plattformen bieten skalierbare Lösungen für Datenverarbeitung und Sicherheit. Gleichzeitig treiben sie die Integration neuer Technologien wie Quantum Computing voran, die in der Zukunft die Verschlüsselung und Datenanalyse revolutionieren könnten.

Ausblick der Digitalisierungstrends

Die Finanzbranche steht an einem Wendepunkt. Digitale Banken haben die Chance, nicht nur Technologien zu adaptieren, sondern als Wegbereiter einer inklusiveren und effizienteren Finanzwelt aufzutreten. Die Verknüpfung von KI, IoT und Blockchain wird es ermöglichen, personalisierte Finanzprodukte anzubieten, die gleichzeitig sicher und skalierbar sind. Zukünftige Innovationen wie Quantum Computing könnten zudem die Sicherheitsstandards weiter erhöhen und die Datenverarbeitung revolutionieren.

Welcher ist der 6. Digitalisierungstrend?

Helfen Sie den 6. Digitalisierungstrend zu benennen? Nehmen Sie hierzu an der Twitter-Umfrage teil. Selbstverständlich freue ich mich auch über Kommentare und eine spannende Diskussion:

Hyper Kickoff Event: 5th Frankfurt Analytics + Tableau User Group Meetup

Tableau Hyperfest: Hyper Kickoff Event at Tableau's Frankfurt office
Tableau Hyperfest: Hyper Kickoff Event at Tableau’s Frankfurt office

We’d like to invite you to the 5th Frankfurt Analytics + Tableau User Group Meetup.

Join us for the global launch of Tableau’s super fast data engine, Hyper! Hyper brings faster data refreshes and query performance to Tableau extracts, plus increased scalability in a platform-wide update.

This is your opportunity to get to know the Hyper dev team, hear from Tableau beta customers about their hands-on Hyper experience, and participate in live Q&A. Best of all, learn more about Hyper’s patent-pending technology as well as some of the other features headed your way in 10.5. (Viz in Tooltip, anyone?)

Tableau is hosting the Hyperfest meetup – come and celebrate with the community and the world on the upcoming release of Hyper. In addition to the Hyper presentation, we will also have food, drinks and Tableau swag, so don’t miss it!

-> Sign Up <-

Tableau Hyperfest meetup event page
Sign up for free at the Hyperfest meetup event page

Agenda

9:00pm: Doors Open

9:30pm: Presentations:

10:30pm: Drinks & Networking

11:00pm: Live Hyperfest Viewing Party

Midnight: Event Concludes

Livestream: Follow us on Twitter @FraAnalytics and check for the livestream and additional content!

Feedback and ideas: Let us know if you’d like to discuss a particular topic or if you want to become one of our future speakers – email or twitter.

5 Takeaways from Tableau’s Hybrid Transactional/Analytical Processing

What makes Hyper so fast?
The Future of Enterprise Analytics: Hyper can handle both OLTP and OLAP simultaneously. In the future it will address NoSQL and graph workloads.

1. What is Hyper’s key benefit?

Hyper is a Hybrid transactional/analytical processing (HTAP) database system and replaces Tableau Data Extracts (TDE). The change will be mostly transparent for end users, other than everything being faster. Hyper significantly improves extract refresh times, query times and overall performance.

2. What is Hybrid transactional/analytical processing?

As defined by Gartner:

Hybrid transaction/analytical processing (HTAP) is an emerging application architecture that „breaks the wall“ between transaction processing and analytics. It enables more informed and „in business real time“ decision making.

The two areas of online transaction processing (OLTP) and online analytical processing (OLAP) present different challenges for database architectures. Currently, customers with high rates of mission-critical transactions have split their data into two separate systems, one database for OLTP and one so-called data warehouse for OLAP. While allowing for decent transaction rates, this separation has many disadvantages including data freshness issues due to the delay caused by only periodically initiating the Extract Transform Load (ETL) data staging and excessive resource consumption due to maintaining two separate information systems.

3. Does Hyper satisfy the ACID properties?

Hyper, initially developed at the Technical University of Munich and acquired by Tableau in 2016, can handle both OLTP and OLAP simultaneously. Hyper possesses the rare quality of being able to handle data updates and insertions at the same time as queries by using hardware-assisted replication mechanisms to maintain consistent snapshots of the transactional data. Hyper is an in-memory database that guarantees the ACID properties (Atomicity, Consistency, Isolation, Durability) of OLTP transactions and executes OLAP query sessions (multiple queries) on the same, arbitrarily current and consistent snapshot.

4. What makes Hyper so fast?

The utilization of the processor-inherent support for virtual memory management (address translation, caching, copy on update) yields both at the same time: unprecedentedly high transaction rates as high as 100,000 per second and very fast OLAP query response times on a single system executing both workloads in parallel. This would support real-time streaming of data in future releases of Tableau. These performance increases come from the nature of the Hyper data structures, but also from smart use of contemporary hardware technology, and particularly nvRam memory. Additional cores provide a linear increment in performance.

5. What does this mean for Tableau?

With Hyper now powering the Tableau platform, your organization will see faster extract creation and better query performance for large data sets. Since Hyper is designed to handle exceptionally large data sets, you can choose to extract your data based on what you need, not data volume limitations. Hyper improves performance for common computationally-intensive queries, like count distinct, calculated fields, and text field manipulations. This performance boost will improve your entire Enterprise Analytics workflow.

Join our „The Future of Enterprise Analytics“ events and get a sneak peak at upcoming features and the Tableau Roadmap: 14th of November in Düsseldorf and 6th of December in Frankfurt.

[Update 20 Dec 2017] Hyper Kickoff Event: Join us for the Hyper Kickoff Event at the 18th of January 2018 in Tableau’s Frankfurt Office.

Data Science Toolbox: How to use Julia with Tableau

Julia in Tableau: R allows Tableau to execute Julia code on the fly, enhancing your data analytics experience.
Julia in Tableau: R allows Tableau to execute Julia code on the fly, enhancing your data analytics experience.

Michael, a data scientist, who is working for a German railway and logistics company, recently told me during a FATUG Meetup that he loves Tableau’s R integration and Tableau’s Python integration. As he continued, he raised the question of using functions they have written in Julia. Julia, a high-level dynamic programming language for high-performance numerical analysis, is an integral part of the newly developed data strategy in Michael’s organization.

Tableau, however, does not come with native support for Julia. I didn’t want to keep Michael’s team down and was looking for an alternative way to integrate Julia with Tableau.

This solution is working flawlessly in a production environment for several months. In this tutorial, I’m going to walk you through the installation and connecting Tableau with R and Julia. I will also give you an example of calling a Julia statement from Tableau to calculate the sphere volume.

Step by Step: Integrating Julia in Tableau

1. Install Julia and add PATH variable

You can download Julia from julialang.org. Add Julia’s installation path to the PATH environment variable.

2. Install R, XRJulia, and RServe

You can download base R from r-project.org. Next, invoke R from the terminal to install the XRJulia and the RServe packages:

> install.packages("XRJulia")
> install.packages("Rserve")

XRJulia provides an interface from R to Julia. RServe is a TCP/IP server that allows Tableau to use facilities of R.

3. Load libraries and start RServe

After packages are successfully installed, we load them and run RServe:

> library(XRJulia)
> library(Rserve)
> Rserve()

Make sure to repeat this step every time you restart your R session.

4. Connecting Tableau to RServe

Now let’s open the Help menu in Tableau Desktop and choose Settings and Performance >Manage External Service connection to open the External Service Connection dialog box:

TC17 External Service Connection

Enter a server name using a domain or an IP address and specify a port. Port 6311 is the default port used by Rserve. Take a look at my R tutorial to learn more about Tableau’s R integration.

5. Adding Julia code to a Calculated Field

You can invoke Calculated Field functions called SCRIPT_STR, SCRIPT_REAL, SCRIPT_BOOL, and SCRIPT_INT to embed your Julia code in Tableau, such as this simple snippet that calculates sphere volume:


SCRIPT_INT('
library(XRJulia)
if (!exists("ev")) ev <- RJulia()
y <- juliaEval("
4 / 3 * %s * ' + STR([Factor]) + ' * pi ^ 3
", .arg1)
',
[Radius])

6. Use Calculated Field in Tableau

You can now use your Julia calculation as an alternate Calculated Field in your Tableau worksheet:

Using Julia within calculations in Tableau (click to enlarge)
Using Julia calculations within Tableau (click to enlarge)

Feel free to download the Tableau Packaged Workbook (twbx) here.

Further Reading: Mastering Julia

If you want to go beyond this tutorial and explore more about Julia in the context of data science, I recommend the book Mastering Julia. You can find it here.

Further Reading: Visual Analytics with Tableau

Join the data science conversation and follow me on Twitter and LinkedIn for more tips, tricks, and tutorials on Julia in Tableau and other data analytics topics. If you’re looking to master Tableau, don’t forget to preorder your copy of my upcoming book, Visual Analytics with Tableau. (Amazon). It offers an in-depth exploration of data visualization techniques and best practices.

Also, feel free to comment and share my Tableau Julia Tutorial tweet:

Social Media and the Customer-centric Data Strategy #data17 #resources

Social media marketing mix
Do you analyze your social media marketing mix? | Photo Credit: via Richard Goodwin

With over 3 billion active social media users, establishing an active presence on social media networks is becoming increasingly essential in getting your business front of your ideal audience. These days, more and more consumers are looking to engage, connect and communicate with their favorite brands on social media.

Adding social media to your customer-centric data strategy will help boost brand awareness, increase followership, drive traffic to your website and generate leads for your sales funnel. In 2017, no organization should be without a plan that actively places their brand on social media, and analyzes their social media data.

Once you’ve started diving into social media analytics, how do you bring it to the next level? This session covers a customer-centric data strategy for scaling a social media data program.

Here are the links (i.e. additional resources) featured during the session to help you formulate your social media data program in order to build a stronger presence and retrieve powerful insights:

The Data Opportunity

TC17 Social Media Slides: The Data Opportunity

Focus on relevant metrics for your strategy

TC17 Social Media Slides: Sentiment Analysis

How to get Social Media in Tableau?

TC17 Social Media Slides: 3rd Party Platform Talkwalker

Tips to Level Up

TC17 Social Media Slides: Unshorten URLs in Tableau with R

Tutorials and Slide Set

The slides and tutorials presented at Tableau Conference on Tour in Berlin are also available on SlideShare, and on YouTube in English and German.

English Tutorials

German Tutorials

Slide Set