Welcome to the #datamustread book club, where we dive into the world of data with compelling and informative reads. This month, I’ve chosen a book that will revolutionize the way you approach data visualization: The Truthful Art by Alberto Cairo. In this blog post, I’ll provide you with an in-depth look at the book and its valuable lessons, as well as examples and anecdotes that demonstrate its relevance to data enthusiasts like you.
Unleashing the Storytelling Potential of Data
The Truthful Art delves into the principles and practices of data visualization, teaching you how to create graphical representations of information that are both effective and honest. By viewing data visualization as a tool for communication, the book emphasizes its potential to convey stories, arguments, and insights to a diverse audience.
A Comprehensive Guide to Data Visualization
This book provides readers with a deep understanding of data analysis, design, storytelling, and the ethical and practical challenges that accompany working with data. Throughout the book, Alberto draws from his experience as a journalist, professor, and consultant to offer practical advice and insights on creating and evaluating data visualizations.
Real-World Examples and Exercises with „The Truthful Art“
What sets The Truthful Art apart from other data visualization resources is its use of real-world examples and exercises. The book goes beyond theoretical concepts by demonstrating how to apply these ideas to your own projects. This hands-on approach ensures that you can readily implement the techniques you learn, making your data visualizations more effective and honest.
A Manifesto for the Truthful Art of Data Communication
The Truthful Art is more than just a guide to data visualization. It’s a call to action, urging readers to think critically and creatively about data and communicate their findings in a clear and compelling way. The book challenges you to reflect on your biases and assumptions and to consider the ethical implications of your work.
Don’t Miss This Essential Read for Data Enthusiasts
If you’re passionate about data visualization and want to take your skills to the next level, The Truthful Art is a must-read. By offering valuable insights, practical examples, and a focus on ethics, this book is an essential resource for anyone who wants to use data to inform, persuade, or inspire others.
Ready to dive into The Truthful Art and transform your approach to data visualization? Order your copy of The Truthful Art today and support both me and the author in our quest to spread the power of honest data visualization.
I’m overjoyed to share an exciting milestone in my journey as a digital strategist and data scientist: myLinkedIn account has now reached a milestone of 30,000 followers! This achievement is more than just a number – it symbolizes a thriving community of enthusiasts passionate about data, AI, and digital transformation. The icing on the cake? Being recognized as a LinkedIn Top Voice in AI, an accolade that underscores my commitment to this fascinating field.
The surge in followers came on the heels of my inspiring ACM talk onGenerative AI—a topic that captivates and challenges the norms of technology and creativity. This talk was more than a presentation of the work of our Microsoft AI For Good Lab; it was an invitation to explore the endless possibilities that AI brings to our world.
I cannot express enough gratitude for the overwhelming response to my book 📘Decisively Digital (➡️ Amazon). Each page was crafted with the intent to guide, enlighten, and inspire. Your support and feedback have been pivotal in its success.
What makes this journey truly remarkable is you – my followers, peers, and fellow enthusiasts. Our shared passion for data, AI, and digital technology has created a unique and vibrant community. Engaging with you, sharing insights, and learning from your perspectives has been one of the most rewarding aspects of my career.
One of the most exciting initiatives has been the #datamustread book club. Witnessing your engagement, the dynamic discussions, and how we are collectively uncovering the potential of data and analytics to shape our world is nothing short of inspiring.
As LinkedIn’s Top Voice in AI, I look forward to continuing our journey of discovery and discussion. Your thoughts, ideas and contributions are the lifeblood of this community. Let’s keep the momentum going and dive deeper into the realms of AI and digital innovation.
Thank you, each and every one of you, for your unwavering support and enthusiasm. Together, let’s take the road to the next 30,000 followers and beyond, making every step a leap toward a more informed, innovative, and inspired digital world.
Following the talk, I was inspired by a conversation to leverage the power of GPT-4 and create an automatically generated summary of the Microsoft Teams transcript. This approach not only streamlines information sharing but also showcases the practical applications of advanced AI technology.
Below, I will share the key insights generated by GPT-4 and also include some captivating images from the event:
Decisively Digital: AI’s Impact on Society
In my talk, I drew inspiration from my book Decisively Digital, which discusses the impact of AI on society. I shared about the innovative projects underway at Microsoft’s AI for Good Lab. In light of GPT-4’s recent launch, I also highlighted our mission to leverage technology to benefit humanity.
By harnessing Generative AI, we can stimulate the creation of innovative ideas and accelerate the pace of advancement. This cutting-edge technology is already transforming industries by streamlining drug development, expediting material design, and inspiring novel hypotheses. AI’s ability to identify patterns in vast datasets empowers humans to uncover insights that might have gone unnoticed.
Generative AI can Augment our Thinking
For instance, researchers have employed machine learning to predict chemical combinations with the potential to improve car batteries, ultimately identifying promising candidates for real-world testing. AI can efficiently sift through and analyze extensive information from diverse sources, filtering, grouping, and prioritizing relevant data. It can also generate knowledge graphs that reveal associations between seemingly unrelated data points, which can be invaluable for drug research, discovering novel therapies, and minimizing side effects.
„Now is the time to explore how Generative AI can augment our thinking and facilitate more meaningful interactions with others.“
Alexander Loth
At the AI for Good Lab, we are currently employing satellite imagery and generative AI models for damage assessment in Ukraine, with similar initiatives taking place in Turkey and Syria for earthquake relief. In the United States, our focus is on healthcare, specifically addressing discrepancies and imbalances through AI-driven analysis.
Our commitment to diversity and inclusion centers on fostering digital equality by expanding broadband access, facilitating high-speed internet availability, and promoting digital skills development. Additionally, we are dedicated to reducing carbon footprints and preserving biodiversity. For example, we collaborate with the NOAH organization to identify whales using AI technology and have developed an election propaganda index to expose the influence of fake news. Promising initial experiments using GPT-4 showcase its potential for fake news detection.
ChatGPT will be Empowered to Perform Real-time Website Crawling
While ChatGPT currently cannot crawl websites directly, it is built upon a training set of crawled data up to September 2021. In the near future, the integration of plugins will empower ChatGPT to perform real-time website crawling, enhancing its ability to deliver relevant, up-to-date information, and sophisticated mathematics. This same training set serves as the foundation for the GPT-4 model.
GPT-4 demonstrates remarkable reasoning capabilities, while Bing Chat offers valuable references for verifying news stories. AI encompasses various machine learning algorithms, including computer vision, statistical classifications, and even software that can generate source code. A notable example is the Codex model, a derivative of GPT-3, which excels at efficiently generating source code.
Microsoft has a long-standing interest in AI and is dedicated to making it accessible to a wider audience. The company’s partnership with OpenAI primarily focuses on the democratization of AI models, such as GPT and DALL-E. We have already integrated GPT-3 into Power BI and are actively developing integrations for Copilot across various products, such as Outlook, PowerPoint, Excel, Word, and Teams. Microsoft Graph is a versatile tool for accessing XML-based objects in documents and generating results using GPT algorithms.
Hardware, particularly GPUs, has played a pivotal role in the development of GPT-3. For those interested in experimenting with Generative AI on a very technical level, I recommend Stable Diffusion, which is developed by LMU Munich. GPT-3’s emergence created a buzz, quickly amassing a vast user base and surpassing the growth of services like Uber and TikTok. Sustainability remains a crucial concern, and Microsoft is striving to achieve a CO2-positive status.
Generative AI Models have garnered Criticism due to their Dual-use Nature
Despite its potential, Generative AI models such as GPT-3 have also garnered criticism due to their dual-use nature and potential negative societal repercussions. Some concerns include the possibility of automated hacking, photo manipulation and the spread of fake news (➡️ deepfake disussion on LinkedIn). To ensure responsible AI development, numerous efforts are being undertaken to minimize reported biases in the GPT models. By actively working on refining algorithms and incorporating feedback from users and experts, developers can mitigate potential risks and promote a more ethical and inclusive AI ecosystem.
Moving forward, it is essential to maintain open dialogue and collaboration between AI developers, researchers, policymakers, and users. This collaborative approach will enable us to strike a balance between harnessing the immense potential of AI technologies like GPT and ensuring the protection of society from unintended negative consequences.
GPT-3.5 closely mimics human cognition. However, GPT-4 transcends its forerunner with its remarkable reasoning capabilities and contextual understanding. GPT models leverage tokens to establish and maintain the context of the text, ensuring coherent and relevant output. The GPT-4-32K model boasts an impressive capacity to handle 32,000 tokens, allowing it to process extensive amounts of text efficiently. To preserve the context and ensure the continuity of the generated text, GPT-4 employs various strategies that adapt to different tasks and content types.
GPT-4 Features a Robust Foundation in Common Sense Reasoning
One of GPT-4’s defining features is its robust foundation in common sense reasoning. This attribute significantly contributes to its heightened intelligence, enabling the AI model to generate output that is not only coherent but also demonstrates a deep understanding of the subject matter. As GPT-4 continues to evolve and refine its capabilities, it promises to revolutionize the field of artificial intelligence, expanding the horizons of what AI models can achieve and paving the way for future breakthroughs in the realm of generative AI.
In the near future, advanced tools like ChatGPT will elucidate intricate relationships without requiring us to sift through countless websites and articles, further amplifying the transformative impact of Generative AI.
I appreciate the opportunity to share my insights at the German Chapter of the ACM.
Did you enjoy this GPT-generated Summary of my Talk?
Leveraging GPT-4 to generate a summary of my talk was an exciting experiment, and I have to admit, the results are impressive. GPT was able to provide a brief overview of the key takeaways from my talk.
Now, I would love to hear about your experiences with GPT. What are your experiences with GPT so far? Feel free to share your thoughts in the comments section of this Twitter thread or this LinkedIn post:
Die Bedrohung durch KI-generierte Bilder im Kontext von Fake News, besser bekannt als Deepfakes, ist seit Jahren ein Thema in der öffentlichen Diskussion. Bis vor kurzem war es jedoch relativ einfach, ein KI-generiertes Bild von einem echten Foto zu unterscheiden. Doch diese Zeiten sind vorbei. Am vergangenen Wochenende ging ein KI-generiertes Bild von Papst Franziskus in einer Balenciaga-Daunenjacke viral und führte viele Internetnutzer in die Irre.
Die rasante Entwicklung der KI-generierten Bilder
In nur wenigen Monaten haben öffentlich zugängliche KI-Tools zur Bildgenerierung einen Grad an Fotorealität erreicht, der beeindruckend ist. Obwohl das Bild des Papstes einige verräterische Anzeichen einer Fälschung aufwies, war es überzeugend genug, um viele zu täuschen. Dieses Ereignis könnte als die erste wirklich virale Desinformation in die Geschichte eingehen, die durch Deepfake-Technologie angetrieben wurde.
Die Gefahren von Deepfakes
Opfer von Deepfakes, insbesondere Frauen, die Opfer von nicht einvernehmlicher Deepfake-Pornografie geworden sind, warnen seit Jahren vor den Risiken dieser Technologie. In den letzten Monaten sind Bildgenerierungstools noch zugänglicher und leistungsfähiger geworden, was zu qualitativ hochwertigeren gefälschten Bildern geführt hat. Mit dem raschen Fortschritt der künstlichen Intelligenz wird es noch schwieriger, echte von gefälschten Bildern zu unterscheiden. Dies könnte erhebliche Auswirkungen auf die Anfälligkeit der Öffentlichkeit für ausländische Einflussnahme, gezielte Belästigung und das Vertrauen in Nachrichten haben.
Wie lassen sich KI-generierte Bilder und Deepfakes erkennen?
Es gibt einige Tipps, wie Sie KI-generierte Bilder und Deepfakes erkennen können:
Trügerische Details: Betrachtet man das Bild des Balenciaga-Papstes aus der Nähe, lassen sich einige verräterische Hinweise auf seine Herkunft aus der KI erkennen. Das Kreuz, das scheinbar ohne Kette in der Luft hängt, oder die Kaffeetasse, die ohne erkennbaren Henkel in seiner Hand steht, sind solche Hinweise.
Unnatürliche Physik: KI-Generatoren verstehen oft nicht, wie Objekte in der realen Welt interagieren. Unlogische Elemente wie schwebende Objekte oder ungewöhnlich geformte Körperteile können ein Indikator für KI-Generierung sein.
Detailgenauigkeit: KI-Bildgeneratoren sind im Wesentlichen Musterreplikatoren. Sie haben gelernt, wie der Papst aussieht und wie eine Daunenjacke von Balenciaga aussehen könnte, und können beides erstaunlich gut kombinieren. Aber die Gesetze der Physik verstehen sie (noch) nicht. So wird der scheinbar schwebende Kreuzanhänger oder die unlogische Verschmelzung von Brillengläsern und deren Schatten zum verräterischen Detail.
Fehlende Logik: In den Randbereichen eines Bildes können Menschen intuitiv Unstimmigkeiten erkennen, die KI nicht versteht. Diese Unstimmigkeiten können ein Hinweis auf eine KI-Generierung sein.
Technische Grenzen: KI-Generatoren haben Schwierigkeiten, komplexe und detaillierte Szenen fehlerfrei zu reproduzieren. Achten Sie auf Anomalien in Texturen oder ungewöhnliche Muster.
Inkonsistente Beleuchtung: Beleuchtung und Schatten sind für KI-Generatoren oft schwierig korrekt darzustellen. Achten Sie auf inkonsistente Lichtquellen, unstimmige Reflexionen in den Pupillen oder unnatürlich wirkende Schatten.
Unnatürliche Proportionen: KI-Generatoren können Schwierigkeiten haben, die richtigen Proportionen von Gesichtern oder Körpern zu reproduzieren. Achten Sie auf ungewöhnliche oder verzerrte Proportionen als Hinweis auf eine KI-Erstellung.
Wie wir uns in Zukunft nicht durch Deepfakes täuschen lassen
Im Moment sind Medienkompetenztechniken vielleicht Ihre beste Möglichkeit, um mit KI-generierten Bildern Schritt zu halten. Fragen Sie sich: Woher kommt dieses Bild? Wer teilt es und warum? Wird es durch andere verlässliche Informationen widerlegt?
Suchmaschinen wie Google bieten ein Tool für die umgekehrte Bildsuche an, mit dem Sie überprüfen können, wo ein Bild bereits im Internet geteilt wurde und was darüber gesagt wird. Dieses Tool kann Ihnen dabei helfen herauszufinden, ob Experten oder vertrauenswürdige Publikationen ein Bild als Fälschung eingestuft haben.
Dieser Artikel ist ein Auszug aus dem Buch KI für Content Creation von Alexander Loth. Alle Infos zum Buch und eine kostenlose Leseprobe findet ihr bei Amazon.
Diskutieren Sie mit auf LinkedIn, wie man Deepfakes erkennt und was das für unsere digitale Zukunft bedeutet:
With today’s launch of OpenAI’s GPT-4, the next generation of its Large Language Model (LLM), generative AI has entered a new era. This latest model is more advanced and multimodal, meaning GPT-4 can understand and generate responses based on image input as well as traditional text input (see GPT-4 launch livestream).
Generative AI has rapidly gained popularity and awareness in the last few months, making it crucial for businesses to evaluate and implement strategies across a wide range of industries, including e-commerce and healthcare. By automating tasks and creating personalized experiences for users, companies can increase efficiency and productivity in various areas of value creation. Despite being in development for decades, it’s high time for businesses to apply generative AI to their workflows and reap its benefits.
Before you dive into OpenAI GPT-4, let’s take a quick look back at the evolution of generative AI…
The history of generative AI begins in the late 1970s and early 1980s when researchers began developing neural networks that mimicked the structure of the human brain. The idea behind this technology was to assemble a set of neurons that could pass information from one to another with some basic logic, and together the network of neurons could perform complicated tasks. While minimal advances were made in the field, it remained largely dormant until 2010, when Google pioneered deep neural networks that added more data, hardware, and computing resources.
In 2011, Apple launched Siri, the first mass-market speech recognition application. In 2012, Google used the technology to identify cats in YouTube videos, finally reviving the field of neural networks and AI. Both Google and NVIDIA invested heavily in specialized hardware to support neural networks. In 2014, Google acquired DeepMind, which built neural networks for gaming. DeepMind built AlphaGo, which went on to defeat all the top Go players, a pivotal moment because it was one of the first industrial applications of generative AI, which uses computers to generate human-like candidate moves.
OpenAI was founded to democratize AI as a non-profit organization
In 2015, OpenAI was founded to democratize AI and was established as a non-profit organization. In 2019, OpenAI released GPT-2, a large-scale language model capable of producing human-like text. However, GPT-2 sparked controversy because it could produce fake news and disinformation, raising concerns about the ethics of generative AI.
In 2021, OpenAI launched DALL-E, a neural network that can create original, realistic images and art from textual description. It can combine concepts, attributes, and styles in novel ways. A year later, Midjourney was launched by the independent research lab Midjourney. Also in 2022, Stable Diffusion, an open-source machine learning model developed by LMU Munich, was released that can generate images from text, modify images based on text, or fill in details in low-resolution or low-detail images.
OpenAI launched ChatGPT in November 2022 as a fine-tuned version of the GPT-3.5 model. It was developed with a focus on enhancing the model’s ability to process natural language queries and generate relevant responses. The result is an AI-powered chatbot that can engage in meaningful conversations with users, providing information and assistance in real-time. One of the key advantages of ChatGPT is its ability to handle complex queries and provide accurate responses. The model has been trained on a vast corpus of data, allowing it to understand the nuances of natural language and provide contextually relevant responses.
Today’s launch of OpenAI GPT-4 marks a significant milestone in the evolution of generative AI!
This latest model, GPT-4, is capable of answering user queries via text and image input. The multimodal model demonstrates remarkable human-level performance on various professional and academic benchmarks, indicating the potential for widespread adoption and use. One of the most significant features of OpenAI GPT-4 is its ability to understand and process image inputs, providing users with a more interactive and engaging experience.
Users can now receive responses in the form of text output based on image inputs, which is a massive step forward in the evolution of AI. Depending on the model used, a request can use up to 32,768 tokens shared between prompt and completion, which is the equivalent of about 49 pages. If your prompt is 30,000 tokens, your completion can be a maximum of 2,768 tokens.
Bing has already integrated GPT-4 and offers both, chat and compose modes for users to interact with the model. With the integration of GPT-4, Bing has significantly enhanced its capabilities to provide users with more accurate and personalized search results, making it easier for them to find what they are looking for.
The disruptive potential of generative AI is enormous, particularly in the retail industry. The technology can create personalized product recommendations and content, and even generate leads, saving sales teams time and increasing productivity. However, the ethical implications of generative AI cannot be ignored, particularly in the creation of disinformation and fake news.
To sum up, generative AI is here to stay, and companies must evaluate and implement strategies swiftly. As generative AI technology advances, so do the ethical concerns surrounding its use. Therefore, it is critical for companies to proceed with caution and consider the potential consequences of implementing generative AI into their operations.
Are you already using generative AI for a more productive workflow?
What improvement do you expect from OpenAI GPT-4 in this regard? I look forward to reading your ideas in the comments to this LinkedIn post:
We use cookies to optimize our website and our service.
Functional
Immer aktiv
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.