Artificial General Intelligence (AGI): Wie KI unser Verständnis von Intelligenz herausfordert – Neue Folge von „Die Digitalisierung und Wir“

KI so intelligent wie der Mensch? Der Weg Richtung AGI.
KI so intelligent wie der Mensch? Der Weg Richtung AGI.

In der neuesten Folge unseres Podcasts Die Digitalisierung und Wir sprechen wir über das Thema Artificial General Intelligence (AGI) ein. Wie nahe sind wir wirklich an der Schaffung einer KI, die menschliche Intelligenz nicht nur imitiert, sondern erreicht?

1. Programmiersprachen und KI: warum funktioniert das so gut?

Programmiersprachen funktionieren ähnlich wie unsere natürlichen Sprachen. Genau hier setzen Large Language Models (LLMs) wie GPT-4 (Generative Pre-trained Transformer) an, um Programmierern das Leben zu erleichtern. Viele Programmieraufgaben, wie das Schreiben von Code oder das Debuggen, erfordern ein tiefes Verständnis von Mustern und Logik, ähnlich dem Erlernen einer Sprache. LLMs wie GPT können Kontext verstehen und darauf basierend Code generieren oder Vorschläge machen. Diese Fähigkeit macht LLMs zu wertvollen Werkzeugen für Entwickler, indem sie die Effizienz steigern und den Zugang zum Programmieren vereinfachen. Die Nutzung von LLMs kann auch Nicht-Programmierern helfen, einfache Programmieraufgaben durchzuführen oder automatisierte Lösungen zu erstellen.

2. Unerwartete Lösungen dank GPT-Modelle

GPT-Modelle brechen die Grenzen herkömmlicher Problemlösungsstrategien auf. GPT-Modelle sind darauf trainiert, Muster in großen Datenmengen zu erkennen und zu imitieren. Dies ermöglicht ihnen, in kreativen und unvorhersehbaren Wegen zu antworten, was zu innovativen Lösungen führen kann, die menschliche Denkprozesse nachahmen. Solche Modelle können Branchen transformieren, indem sie neue Perspektiven auf Probleme bieten und Lösungswege vorschlagen, die über traditionelle menschliche Ansätze hinausgehen.

3. Sind wir bei „Sparks of AGI“?

Können Maschinen kreativ sein? Die Diskussion um Artificial General Intelligence im Kontext GPT bezieht sich auf die Momente, in denen KI-Modelle Verhalten zeigen, das scheinbar echtes Verständnis oder „Intelligenz“ impliziert. Diese Debatte wirft wichtige Fragen auf über das, was Intelligenz ausmacht und ob maschinell erzeugte Outputs, die menschliches Denken spiegeln, als echte Intelligenz betrachtet werden können. Es fordert auch unsere Definition von Kreativität und Bewusstsein heraus.

4. Von ANI zu AGI: Der entscheidende Sprung

Die Unterscheidung zwischen Artificial Narrow Intelligence (ANI) und Artificial General Intelligence (AGI) hilft uns, das Potenzial und die Grenzen aktueller KI-Entwicklungen zu verstehen. Während ANI spezialisierte Aufgaben meistert, strebt AGI danach, das breite Spektrum menschlicher Intelligenz zu erfassen. Diese Kategorisierung hilft, die Potenziale und Grenzen aktueller und zukünftiger KI-Entwicklungen zu verstehen und zu planen, wie Gesellschaft und Technologie gemeinsam evolvieren können.

5. Aktuelle Anwendungen von ANI

Von Sprachassistenten bis zu autonomen Fahrzeugen – ANI findet Anwendung in einer breiten Palette von Feldern, die von der Automatisierung einfacher Aufgaben bis hin zur Lösung komplexer Probleme reichen. Diese Vielfalt an Anwendungen demonstriert das transformative Potenzial von KI, sowohl in der Steigerung der Effizienz bestehender Prozesse als auch in der Schaffung neuer Möglichkeiten und Märkte.

6. „Proto AGI“: Auf dem Weg zu AGI

Die rasanten Fortschritte in der KI-Forschung könnten uns näher an AGI heranführen, als wir es uns vorstellen. Die Vorstufe von AGI, von Alexander Loth Proto AGI genannt, könnten als frühe Stufen der AGI angesehen werden. Fortschritte in der KI-Forschung führen zu schnellen und manchmal unerwarteten Durchbrüchen, die die Grenzen dessen erweitern, was technologisch möglich ist. Während „Proto AGI“-Modelle noch nicht das volle Spektrum menschlicher Intelligenzfähigkeiten erreichen, zeigen sie dennoch den Weg hin zu AGI und stellen wichtige Schritte in unserer Annäherung an Maschinen mit menschenähnlichen Denkfähigkeiten dar.

7. Die Tücken synthetischer Datensätze

Synthetische Datensätze bieten zwar eine Lösung für den Mangel an Trainingsdaten, können aber unbeabsichtigt bestehende Vorurteile verstärken. Synthetische Datensätze werden erzeugt, um Trainingsdaten für KI-Modelle zu diversifizieren, können aber unbeabsichtigt die in den Originaldaten vorhandenen Vorurteile und Verzerrungen replizieren oder sogar verstärken. Die Verwendung synthetischer Daten erfordert sorgfältige Überwachung und Bewertung, um sicherzustellen, dass diese nicht nur die Vielfalt erhöhen, sondern auch fair und unvoreingenommen sind. Die Entwicklung robusterer Algorithmen zur Überprüfung und Korrektur dieser Datensätze ist entscheidend.

8. Gedächtnis und Kontext in KI

Die Begrenzung des Gedächtnisses und des Kontextverständnisses in aktuellen KI-Modellen zeigt, wie viel Arbeit noch vor uns liegt. Eine verbesserte Speicher- und Kontextverarbeitung könnte die Tür zu AGI weiter öffnen. Aktuelle KI-Modelle, insbesondere Sprachmodelle, haben Schwierigkeiten, Informationen über längere Texte hinweg zu behalten oder den Kontext tiefergehend zu verstehen. Verbesserungen in der Speicher- und Kontextverarbeitungsfähigkeit sind essenziell, um KI-Modelle vielseitiger und nützlicher zu machen. Fortschritte in diesen Bereichen könnten zu einem besseren Verständnis komplexer Anfragen und zur Generierung kohärenterer und relevanterer Antworten führen.

9. Skalierungs-Herausforderungen

Die Skalierung von KI-Modellen erfordert erhebliche Rechenleistung und den Zugang zu umfangreichen, qualitativ hochwertigen Datensätzen. Während die Skalierung das Potenzial und die Leistungsfähigkeit von KI-Modellen erheblich steigern kann, birgt sie auch Risiken wie die Selbstreferenzierung, bei der Modelle zunehmend auf von KI generierte Daten trainiert werden, was ihre Innovation und Genauigkeit beeinträchtigen kann.

10. Artificial General Intelligence als gesellschaftliches Werkzeug

Könnte Artificial General Intelligence dabei helfen, menschliche Schwächen in Entscheidungsprozessen auszugleichen? KI bietet die Möglichkeit, menschliche Fähigkeiten zu ergänzen und zu erweitern, insbesondere in Bereichen, in denen kollektive Entscheidungsprozesse anfällig für Verzerrungen und Ineffizienzen sind. Durch die Nutzung von KI in Entscheidungsfindungsprozessen können wir von schnelleren, datenbasierten und objektiveren Entscheidungen profitieren. Dies setzt jedoch voraus, dass wir sorgfältig über die ethischen Rahmenbedingungen nachdenken und sicherstellen, dass KI-Systeme gerecht, transparent und nachvollziehbar gestaltet sind.

In meinem Buch KI für Content Creation (Amazon) vertiefen wir weiter, wie KI kreative Prozesse unterstützen und verbessern kann. Erfahrt in diesem KI-Buch mehr über die Möglichkeiten, die sich uns bereits heute und in der nahen Zukunft eröffnen.

Podcast abonnieren und am Data & AI Meetup teilnehmen

Hört in unsere neueste Episode rein und abonniert Die Digitalisierung und Wir, um keine unserer spannenden Episoden zu verpassen.

Nicht verpassen: am 4. April findet unser Data & AI Meetup in Frankfurt statt. Wir sprechen über aktuelle und zukünftige KI-Trends, und diskutieren im Panel mit Dilyana Bossenz und Philipp Güth! Das Event findet um 18:30 bei CHECK24 im 10. OG mit einem atemberaubenden Ausblick auf den Main statt. Mehr Informationen und Anmeldung findest du hier.

Was ist deine Meinung zu den Möglichkeiten von AGI? Diskutiere mit uns auf LinkedIn und X (Twitter) und nimm an unserem #KIBuch-Gewinnspiel teil:

„Artificial General Intelligence (AGI): Wie KI unser Verständnis von Intelligenz herausfordert – Neue Folge von „Die Digitalisierung und Wir““ weiterlesen

Meetup #19 – Chart Choice & Anomaly Detection for Warranty Cases

Dilyana's session: Chart Choice - many ways to visualize data
Dilyana’s session: Chart Choice – many ways to visualize data

Recently we had the 19th edition of our Data & AI Meetup. This meetup focused on Chart Choice & Anomaly Detection for Warranty Cases. Let’s have a quick recap!

Agenda:

Meetup discussion: Sven, Alexander, and Shubham
Meetup discussion: Sven, Alexander, and Shubham

  1. Intro & announcements: our 5th anniversary
  2. Chart Choice
    by Dilyana Bossenz, Business Analytics and Enablement Manager at M2.
  3. New Book: Decisively Digital – From Creating a Culture to Designing Strategy
    by Alexander Loth, author & executive advisor at Microsoft
  4. Anomaly Detection for warranty cases with an example of the automotive industry
    by Shubham Agarwal, Lead Data Scientist at ATCS
    and Frank Schlemmbach, Sr. Consultant at ATCS
    and Sven Sommerfeld, Managing Director at ATCS
  5. Wrap-up

Session recording:

Further information:

The next Data & AI Meetup?

The next Data & AI Meetup will be announced on the Data & AI LinkedIn group and on the Data & AI Meetup page. Feel free to join!

If you’ve dreamed of sharing your Data & AI story with many like-minded Data & AI enthusiasts, please submit your session proposal.

Recap of the 17th Data & AI Meetup: Data & AI in Healthcare

Analyzing Medical Images: Detecting Pneumonia with Custom Vision
Analyzing Medical Images: Detecting Pneumonia with Custom Vision AI

Recently we had the 17th edition of our Data & AI Meetup. This meetup focused on Data & AI in Healthcare. Let’s have a quick recap!

Agenda:

16:00 – Willkommen & Intro
16:05 – BI as a Service für eine bessere Healthcare Supply Chain
Christopher Glogger, Sana Einkauf & Logistik
16:35 – AI Trends und Use cases
Andreas Kopp, Microsoft
17:20 – Visuelle Datenanalyse rund um CoViD-19
Markus Raatz, Ceteris AG
17:55 – Wrap up

Session recording:

Further information:

The next Data & AI Meetup?

The next Data & AI Meetup will be announced on the Data & AI LinkedIn group and on the Data & AI Meetup page. Feel free to join!

If you’ve dreamed of sharing your Data & AI story with many like-minded Data & AI enthusiasts, please submit your session proposal.

Recap of the 16th Data & AI Meetup: Azure Bootcamp

Azure Synapse Analytics Screenshot
Azure Synapse Analytics demo shown during the meetup

Yesterday we had the 16th edition of our Data & AI Meetup. This meetup was a hands-on Azure Bootcamp. Let’s have a quick recap!

Agenda:

  1. Welcome & Intro
  2. Azure SQL DB
  3. Azure Data Factory
  4. Azure Synapse Analytics
  5. Visual Analytics with Power BI on Azure

Session recording:

Further information:

The next Data & AI Meetup?

The next Data & AI Meetup will be announced on the Data & AI LinkedIn group and on the Data & AI Meetup page. Feel free to join!

If you’ve dreamed of sharing your Data & AI story with many like-minded Data & AI enthusiasts, please submit your session proposal.

Recap of the 15th Data & AI Meetup: Reinforcement Learning; TensorFlow on Azure; Visual Analytics

200 attendees at the 15th Data & AI Meetup at DB Systel in Frankfurt, Germany
200 attendees at the 15th Data & AI Meetup at DB Systel in Frankfurt, Germany

Yesterday we had an amazing Data & AI Meetup in Frankfurt! Let’s have a quick recap!

The venue: DB Systel’s Silberturm

DB Systel kindly hosted the 15th iteration of our Data & AI Meetup on the 30th floor of the Silberturm in Frankfurt, Germany.

Welcome & Intro

Darren Cooper and I had the pleasure to welcome 200 Data & AI enthusiasts! Furthermore, we were happy to announce that our Data & AI Meetup group has 1,070 members and our brand new Data & AI LinkedIn group already has 580 members.

Reinforcement Learning of Train Dispatching at Deutsche Bahn

Dr. Tobias Keller, Data Scientist at DB Systel, showed in his session how Deutsche Bahn aims at increasing the speed of the suburban railway system in Stuttgart (S-Bahn) using Artificial Intelligence. In particular, a simulation-based reinforcement learning approach provides promising first results.

TensorFlow & Co as a Service

Sascha Dittmann, Cloud Solution Architect for Advanced Analytics & AI at Microsoft, showed in his presentation, how TensorFlow and other ML frameworks can be used better in a team through appropriate Microsoft Cloud services. He presented different ways of how data science experiments can be documented and shared in a team. He also covered topics such as versioning of the ML models, as well as the operationalization of the models in production.

Visual Analytics: from messy data to insightful visualization

Daniel Weikert, Expert Consultant at SIEGER Consulting, showed in his session the ease of use of Microsoft Power BI Desktop. He briefly highlighted the AI Capabilities which Power BI provides and showed a way on how to get started with messy data, doing data cleaning and visualize results in an appealing way to your audience.

Speaking at an upcoming Data & AI meetup?

If you’ve dreamed of sharing your Data & AI story with many like-minded Data & AI enthusiasts, please submit your session proposal or reply to the recap tweet: