How China is Winning in the Age of Artificial Intelligence: A Deep Dive into Innovation, Culture, and Strategy

China AI: The impressive Alibaba Campus in Hangzhou, a hub of innovation and intrapreneurship.
China AI: The impressive Alibaba Campus in Hangzhou, a hub of innovation and intrapreneurship.

China’s AI revolution is taking the world by storm. In this journey across cities like Hangzhou, discover how China is leading the AI industry, inspiring innovation, and shaping the future.

Currently, I’m on a 4-week China trip, visiting many cities. In Hangzhou, I met CEIBS peers who work for Alibaba. While the Alibaba campus is quite impressive, I got even more impressed by Alibaba’s leadership culture, which is encouraging its employees to innovate as intrapreneurs.

Intrapreneurship at Alibaba: The China AI Model for Success

At the impressive Alibaba Campus in Hangzhou, I discovered the power of intrapreneurship. If you start your own project (a new mobile app, a patent, a scientific paper, etc.), you’re doing it at your own pace. Employees are encouraged to innovate at their own pace, without being micro-managed. Success is rewarded with bonuses. Truly, this is where we can learn from China in the „China AI“ landscape!

China’s AI Ambitions: Leading the New World Order

Yue and me, Hangzhou West Lake

While traveling in China I was reading AI Superpowers: China Silicon Valley, and the New World Order by Kai-Fu Lee, a book that is a must-read to get an idea of where China’s AI ambitions are heading to. What matters most for AI innovation these days, the author argues, is access to vast quantities of data—where China’s advantage is overwhelming.

A quite entertaining book focusing on the new mindset of China’s young generation is this one: Young China: How the Restless Generation Will Change Their Country and the World by Zak Dychtwald.

Visualizing the Journey: Exploring my Tableau Public Viz

Which other cities in China did I visit? Check out my Tableau Public viz:

A visualization of my 2019 China Visit, exploring the cities and experiences.
A visualization of my 2019 China Visit, exploring the cities and experiences.

Interested in Visual Analytics? Grab a copy of my latest book, Visual Analytics with Tableau (Amazon), for a comprehensive guide to mastering data visualization.

Stay Connected and Explore More on China AI

China’s AI is reshaping the global landscape. From Alibaba to the nation’s strategies, China AI inspires and challenges the world. It’s a blend of technology, culture, and energy driving China’s AI revolution.

The experiences and insights from this trip have been truly enlightening. I invite you to join me as I continue to explore the fascinating world of China AI, digital transformation, and visual analytics. Follow me on Twitter and LinkedIn, and let’s continue learning together.

Don’t miss my upcoming book, Decisively Digital: From Creating a Culture to Designing Strategy (Amazon) Dive deep into digital transformation and be part of the new era of innovation.

Is Crypto Dead? What to Buy/Mine? FinTechs beyond Blockchain?

A close-up of a Bitcoin held against a price chart showing market fluctuations, symbolizing the debate on whether crypto is dead and highlighting opportunities in blockchain and FinTech investments.
Bitcoin held in front of a declining price chart, reflecting the question ‚Is Crypto Dead?‘ and exploring future investment strategies. | Photo Credit: via Marco Verch

Is crypto dead? With Bitcoin crashing to its lowest this year, losing over 25% in a week, many investors are asking this exact question.

Yesterday, on my way to an AI roundtable, I had an interesting conversation about the future of crypto assets. I met Michael, who works for one of the world’s biggest insurance companies, on the train from Frankfurt to Munich. Of course, our conversation started with a nifty 7-minute Tableau demo – a wonderful ice breaker!

After closing the demo with the Bitcoin Dashboard on Tableau Public, the conversation quickly headed towards crypto assets and (non-)blockchain FinTechs. These are the top 3 of Michael’s questions that I want to share with you – together with my answers:

1. Is the blockchain innovation dead or is crypto dead?

Absolutely not! Blockchain is a relatively new technology which has a long way to go before it becomes mainstream. Last year, the most successful projects were those that aimed at adapting new technologies for convenient use. Furthermore, crypto assets create a new structure of safe and anonymous storage and management of information. Projects like Ethereum have proven to be extremely useful for building steady and secure smart contracts, cloud storage, and product quality control.

For a deeper dive into blockchain’s potential, I recommend my previous post: Digital Banking: The Opportunities of Blockchain, AI, and Machine Learning.

2. Are there still interesting crypto assets to buy or to mine?

Yes, indeed! In particular, I suggest focusing on crypto assets targeting innovative use cases. If you buy these, you are actually investing in technology projects:

  • Chainlink (LINK): Provides decentralized oracles that connect smart contracts with off-chain data, essential for the future of decentralized finance (DeFi).
  • Stellar (XLM): Focuses on cross-border payments and financial inclusion, making it ideal for emerging markets.
  • VeChain (VET): Specializes in supply chain management and ensures transparency in logistics.
  • Factom (FCT): recently announced a partnership with Equator PRO, and according to the press release that announced the -partnership, Equator PRO is a software-as-a-service (SaaS) solution that aims to offer efficiency and oversight to help other mortgage servicers.
Factom use cases highlighting blockchain applications such as proof of existence, digital identity, audit history, and compliance—examples that address whether crypto is dead or evolving.
Factom use cases demonstrating blockchain solutions like proof of existence, data integrity, and compliance—key insights into the ‚Is Crypto Dead?‘ debate.

For mining, consider these:

  • Grin (GRIN): Uses the privacy-focused Mimblewimble protocol, offering scalable and anonymous transactions.
  • Ravencoin (RVN): Focuses on asset tokenization and remains a strong candidate for mining enthusiasts.

For more insights into diversifying a long-term crypto portfolio, see my blog post: How to Diversify a Long-term Crypto Portfolio.

Definitely! FinTech innovation goes far beyond blockchain. Key areas to watch include:

  • AI-powered Financial Analytics: Platforms like Tableau and Microsoft Power BI are transforming how businesses visualize and analyze data in real-time. AI integration can deliver actionable insights faster than ever.
  • Robo-Advisors: Tools like Betterment and Wealthfront use machine learning to provide personalized investment strategies.
  • Alternative Lending Platforms: Companies like Mintos and Funding Circle are making loans more accessible to small businesses, leveraging AI and data analytics for risk assessment.

Outlook: Is Crypto Dead or Ready to Evolve?

The question „Is Crypto Dead?“ often arises during downturns, but history suggests resilience. Blockchain technology is still in its early stages, and future innovations, such as quantum-resistant cryptography and tokenized real-world assets, will shape its evolution.

We may soon witness seamless integration of AI with blockchain, enabling self-governing smart contracts and predictive financial models. Moreover, decentralized finance (DeFi) is set to challenge traditional banking structures, creating opportunities for financial inclusion on a global scale.

For a broader discussion on trends impacting digital banking, explore my earlier post: Digitalization Trends in Finance.

What’s your view on crypto?

Let me know your thoughts via Twitter:


Disclaimer: This blog post is for informational purposes only and does not constitute investment advice.

Digitale Banken: Welche Digitalisierungstrends bewegen die Finanzbranche?

Eine Person nutzt die Microsoft HoloLens zur Visualisierung von Datenanalysen und Digitalisierungstrends in der Finanzbranche.
Digitalisierungstrends: Die Microsoft HoloLens ermöglicht eine Immersive und interaktive Analyse von Finanz- und Marktdaten mit Argumented Reality (Blockchain-Dashboard).

Jedes Jahr (2015, 2016, 2017 und 2018) stelle ich Digitalisierungstrends vor, die der Finanzbranche ein großes Potenzial bieten. Dabei geht es vor allem um einen Überblick darüber, welche Trends und Technologien zukünftig eine größere Rolle spielen werden oder könnten.

Für eine umfassendere Analyse zur Rolle von Blockchain, Künstlicher Intelligenz und Machine Learning in digitalen Banken empfehle ich meinen vorherigen Blogpost: Digitale Banken: Die Chancen von Blockchain, Künstlicher Intelligenz und Machine Learning.

Im Folgenden habe ich die fünf Digitalisierungstrends identifiziert, die für Banken und Versicherungen in Zukunft besonders spannend sein dürften:

1. Maschinelles Lernen und Künstliche Intelligenz

Maschinelles Lernen und Künstliche Intelligenz transformieren die Finanzbranche. Maschine Learning und Deep Learning werden im Investment Banking angewandt, um Unternehmensbewertungen schneller und zuverlässiger durchzuführen. Mehr Daten denn je können hinzugezogen werden. Eine Gewichtung der Daten erfolgt komplett autonom. Da manuelle Analyse weitgehend entfällt, werden Entscheidungsprozesse drastisch beschleunigt. Investoren, die mit konventionellen Werkzeugen arbeiten, haben das Nachsehen.

Durch Künstliche Intelligenz gesteuerte Chatbots vermitteln den Kunden eine menschlichen-ähnliche Betreuung. Chatbots werden darüber hinaus in existierende Cloud-basierende Assistenten, wie Alexa oder Siri, eingebunden und sind in der Lage mittels Natural Language Processing, auch komplexere Anfragen zu verstehen. Recommender-Systeme liefern maßgeschneiderte Lösungen, die speziell auf die Bedürfnisse der Kunden abgestimmt sind.

2. Internet of Things

Das Internet der Dinge (IoT) revolutioniert die Art und Weise, wie Banken und Versicherungen Daten nutzen. Wearables und Sensoren liefern Echtzeitdaten über den Lebensstil von Kunden, die zur Berechnung individueller Tarife für Finanz- und Versicherungsprodukte herangezogen werden können. Diese Daten fließen in Recommender-Systeme ein, die personalisierte Angebote erstellen. Darüber hinaus ermöglichen IoT-gestützte Lösungen neue Sicherheitsmechanismen, indem sie Anomalien in Verhaltensmustern erkennen und frühzeitig Alarm schlagen.

3. Blockchain und Dezentrale Finanzsysteme (DeFi)

Die Blockchain-Technologie sorgt für sichere, transparente und kostengünstige Transaktionen. Verträge werden als Smart Contracts in der Blockchain gespeichert und automatisch ausgeführt. Dies reduziert den Bedarf an Intermediären und minimiert Fehlerquellen. Dezentrale Finanzsysteme (DeFi) erweitern diesen Ansatz, indem sie traditionelle Finanzprodukte wie Kredite und Versicherungen in offene, zugängliche Plattformen überführen. Banken können DeFi nutzen, um innovative Finanzprodukte zu entwickeln und neue Märkte zu erschließen.

4. Augmented Reality und Virtual Reality

Augmented Reality (AR) und Virtual Reality (VR) ermöglichen neue Formen der Datenvisualisierung und Zusammenarbeit. Lösungen wie Microsoft’s HoloLens schaffen immersive Arbeitsumgebungen, in denen Analysten und Händler Finanzdaten in Echtzeit interaktiv analysieren können. Diese Digitalisierungstrends fördern nicht nur die Zusammenarbeit, sondern eröffnen auch neue Möglichkeiten für Schulungen und Kundeninteraktionen. Kunden können Finanzprodukte virtuell erkunden und so fundiertere Entscheidungen treffen.

5. Automatisierung und Cloud-basierte Services

Die zunehmende Automatisierung von Prozessen und der Einsatz von Cloud-Technologien ermöglichen eine effizientere Verwaltung von Finanzdienstleistungen. Machine-to-Machine-Kommunikation (M2M) und automatisierte Abläufe reduzieren Kosten und verbessern die Geschwindigkeit von Transaktionen. Cloud-basierte Plattformen bieten skalierbare Lösungen für Datenverarbeitung und Sicherheit. Gleichzeitig treiben sie die Integration neuer Technologien wie Quantum Computing voran, die in der Zukunft die Verschlüsselung und Datenanalyse revolutionieren könnten.

Ausblick der Digitalisierungstrends

Die Finanzbranche steht an einem Wendepunkt. Digitale Banken haben die Chance, nicht nur Technologien zu adaptieren, sondern als Wegbereiter einer inklusiveren und effizienteren Finanzwelt aufzutreten. Die Verknüpfung von KI, IoT und Blockchain wird es ermöglichen, personalisierte Finanzprodukte anzubieten, die gleichzeitig sicher und skalierbar sind. Zukünftige Innovationen wie Quantum Computing könnten zudem die Sicherheitsstandards weiter erhöhen und die Datenverarbeitung revolutionieren.

Welcher ist der 6. Digitalisierungstrend?

Helfen Sie den 6. Digitalisierungstrend zu benennen? Nehmen Sie hierzu an der Twitter-Umfrage teil. Selbstverständlich freue ich mich auch über Kommentare und eine spannende Diskussion:

Digitale Banken: Die Chancen von Blockchain, Künstlicher Intelligenz und Machine Learning

Commerzbank Tower: Zahlt sich für Digitale Banken die Kooperation mit Fintechs aus?
Commerzbank Tower: Zahlt sich für Digitale Banken die Kooperation mit Fintechs aus? (Foto: Flickr)

Die Zukunft digitaler Banken bleibt vielversprechend und spannend. Haben uns kürzlich noch Innovationen in der Erschließung neuer Märkte und in der Vermögensverwaltung beschäftigt, so sind es heute mehr denn je die raffinierten datengetriebenen Technologien, die in den Vordergrund gerückt sind.

Künstliche Intelligenz in digitalen Banken

Banken und Fintechs nutzen die künstliche Intelligenz und die immer besser werdende Verarbeitung von natürlicher Sprache, um Kunden einen besseren Zugang zu Finanzdienstleistungen zu ermöglichen. Produktempfehlungen basierend auf Mustererkennung hilft die passende Dienstleistung anzubieten. Natürliche Sprache wird zu einer Vereinfachung von Zahlungsinteraktionen führen.

Zudem ermöglicht KI die Analyse riesiger Datenmengen in Echtzeit. Systeme, die Daten aus Twitter und anderen öffentlichen Quellen in nutzbare Signale verwandeln, identifizieren die relevantesten Informationen und bieten Finanzinstituten präzise Marktanalysen. Ein Beispiel ist die Bitcoin-Sentiment-Analyse, die Einblicke in Markttrends liefert und Handelsentscheidungen optimiert.

M2M-Lösungen rationalisieren Cloud-basierte Authentifizierung

Zwillingstürme der Deutschen Bank
Deutsche Bank (Foto: Flickr)

Allerdings müssen Zahlungsinteraktionen direkt von Gerät zu Gerät immer noch Barrieren überwinden, wie z.B. das Gewährleisten einer nahtlosen Authentifizierung zwischen den Endgeräten. Bis solche M2M-Lösungen (Machine-to-Machine) mit nahtloser Authentifizierung herstellerübergreifend verfügbar sind, werden sich Geräte weiterhin über Services in der Cloud authentifizieren, bevor Transaktionen ausgeführt werden.

In der Zukunft könnten jedoch dezentrale Identitätssysteme auf Blockchain-Basis diese Barrieren beseitigen. Benutzer könnten digitale Identitäten erstellen, die unabhängig von zentralisierten Plattformen arbeiten und so den Authentifizierungsprozess revolutionieren.

Gamification schafft Anreize für mobile Bezahlung

Mobiles Bezahlen am Point-of-Sale haben sich noch immer nicht flächendeckend durchgesetzt. Obwohl Unternehmen in Zahlungsterminals bereitstellen, fehlt es an Anreizen, um die Nutzer dazu zu ermutigen, mit ihren mobilen Geräten zu bezahlen. Banken haben schon damit begonnen die kostenlose Bargeldversorgung einzuschränken. Digitale Banken und Fintechs können dem Handel mit Gamification helfen das mobile Zahlen für Kunden attraktiver machen.

Künftig könnten KI-gesteuerte Finanz-Avatare das Zahlungserlebnis personalisieren und Kunden spielerisch motivieren, ihre Finanzziele zu erreichen. Zum Beispiel könnten Kunden für das Einhalten von Sparzielen virtuelle Belohnungen erhalten, die in Rabatte oder Cashback-Programme umgewandelt werden.

Blockchain ermöglicht kostengünstige Transaktionsüberprüfung in digitalen Banken

Die Rolle der Blockchain-Technologie bei der Bereitstellung einer verteilten Transaktionshistorie weckt großes Interesse im Zahlungs- und Handelsökosystem. Die Technologie macht Transaktionsgebühren, die Anbieter wie PayPal für das Sicherstellen von Transaktionen erhoben haben, hinfällig. Die Nutzung der Blockchain zur kostengünstigen Überprüfung von Transaktionen wird bei Banken oben auf der Agenda stehen.

Langfristig könnten Smart Contracts weitreichende Auswirkungen haben, indem sie komplexe Finanzprodukte automatisieren. Hypotheken, Kredite und Versicherungsverträge könnten ohne Zwischenhändler verwaltet werden, wodurch Kosten gesenkt und Prozesse beschleunigt würden.

Maschinelles Lernen verbessert die Zahlungssicherheit für digitale Banken

Durch die Digitalisierung von Zahlungen muss die Zahlungssicherheit über eine breite Palette an Endgeräten gewährleistet werden. Geräte können ein erhöhtes Risiko gegenüber fortgeschrittenen Angriffen aufweisen. Bei der Gestaltung von sicheren Zahlungsmethoden erkennt maschinelles Lernen das Verhalten und greift ein, wenn ein solches Verhalten auf ungewöhnliche Verhaltensweisen oder Transaktionsaktivitäten hindeutet.

Darüber hinaus könnten in Zukunft KI-gestützte Sicherheitssysteme Betrugsversuche präventiv blockieren, indem sie kontinuierlich Muster in Transaktionen analysieren und automatisch Anpassungen vornehmen. So entsteht eine dynamische Sicherheitsarchitektur, die sich in Echtzeit weiterentwickelt.

Ausblicke für digitale Banken

Die Zukunft digitaler Banken wird von einer Symbiose aus Blockchain, KI und maschinellem Lernen geprägt sein. Dezentrale Finanzsysteme (DeFi) könnten traditionelle Bankenstrukturen herausfordern und ein transparentes, faires Finanzwesen schaffen. Künstliche Intelligenz könnte die Finanzberatung demokratisieren, indem sie personalisierte Anlageempfehlungen auch für kleinere Anleger erschwinglich macht.

Wir stehen an der Schwelle zu einer Ära, in der Finanzinstitute nicht nur Technologietreiber, sondern auch Treiber sozialer Innovationen sein werden. Mit diesen Entwicklungen werden Banken zunehmend als Plattformen für digitale Identitäten, nachhaltige Investitionen und globale Finanzintegration agieren.

Price and Sentiment Analysis: Why is Bitcoin Going Down?

Bitcoin Price and Sentiment Analysis with variable Moving Average: click to open interactive Tableau dashboard with annotations
Bitcoin Price and Sentiment Analysis with variable Moving Average: click to open interactive Tableau dashboard with annotations

Bitcoin has become one of the trendy investment assets in the recent years. Whenever bitcoin prices approach historical highs, every investor should watch the currency closely. Bitcoin rallied by more than 20% in the first days of 2017, crossing the $1000 mark for the first time since November 2013.

As many experienced bitcoin traders will remember, the first $1000 peak was a case of obvious over exuberance. Bitcoin was hot, plenty of money was pouring into it. Bitcoin investors got too excited, causing a price surge. Prices then rebounded and suffered a long-term collapse shortly after.

Moving Average Convergence/Divergence Indicator

Many traders rely on a Moving Average Convergence/Divergence (MACD) indicator. The MACD is a measure of the convergence and divergence between two EMAs (usually 12 and 26 days) and is calculated by subtracting the two of them. The signal line is constructed by creating an EMA (usually 10 days) of the signal line.

The signal line crossing the MACD from above is a buy signal. The signal line crossing the MACD from below is a sell signal. Relying only on momentum-based indicators (such as the MACD) and optimization-based models, however, will most certainly fail to indicate heavy price drops, as the drop in late 2016.

Predicting Fear with Sentiment Analysis

In late 2016 a lot of people began to pour money into bitcoin again. This time because they were worried that stock markets and other assets were due for a drop. For investors, it is essential to figure out whether or not these fears are actually founded. However, such „safe assets“ are prone to suffering from bubbles. People get scared, get invested into gold, or bitcoin, then realize that their fears were unfounded. As a result bitcoin prices could plummet.

So how to catch emotions such as fear in advance? Twitter is a valuable source of information and emotion. It certainly influences the stock market and can help to predict the market. Sentiment analysis can lead price movements by up to two days. Negative sentiment, however, is reflected in the market much more than positive sentiment. This is probably because most people tweet positive things about bitcoins most of the time. Even more positive news occurred after breaking the $1000 barrier.

This content is part of the session “Price and Sentiment Analysis: Why is Bitcoin Going Down?” that I deliver at the Frankfurt Bitcoin Colloquium. Have a look on my upcoming sessions!

[Update 14 Jun 2017]: Axis for Moving Average adjusted. Relative Date selector added with last 6 month as default. Screenshot updated.

Feel free to share the Bitcoin Price and Sentiment Analysis dashboard, which is also featured as Viz of the Day on Tableau Public: