Predictive Maintenance hilft Ihnen Wartungsmaßnahmen effizient zu gestalten

Screenshot
Predictive Maintenance zeigt verbleibende Nutzungsdauer von Aufzügen der Deutschen Bahn: klicken, um interaktives Dashboard zu öffnen

Nicht nur die Fertigungskosten lassen sich mit Predictive Maintenance senken. Auch im Dienstleistungsbereich entsteht durch Vorhersagen enormes Optimierungspotential. Im wesentlichen lassen sich die Fragestellungen, die im Rahmen von Predictive Maintenance gestellt werden, in drei Klassen einteilen:

  • Wie hoch ist die Wahrscheinlichkeit, dass ein Gerät in naher Zukunft ausfällt?
  • Was sind die Ursachen von Ausfällen und welche Instandhaltungsmaßnahmen sollten durchgeführt werden, um diese Probleme zu beheben?
  • Wie lang ist die Nutzungsdauer eines Gerätes?

Ein Beispiel, das die Frage der Nutzungsdauer in den Mittelpunkt rückt, zeigt das Dashboard Predictive Maintenance Deutsche Bahn Elevators. Dieses Dashboard sagt voraus, wie lange Aufzüge noch ohne Wartung auskommen („Rest of Useful Life“). Mit dem Parameter „Material Wear Off“ lässt sich zudem der Grad der Abnutzung beeinflussen.

Die visualisierten Sensordaten erlauben darüber hinaus die Möglichkeit Anomalien zu entdecken. Hier lassen sich mit den Parametern „Primary Sensor“ und „Secondary Sensor“ verschiedene Kombinationen analysieren. In der „Setting Matrix“ werden die verschiedene Einstellungen, die beim Betreiben der Aufzüge angewandt werden zusammengefasst.

Details zu den Aufzügen werden im Tooltip angezeigt. In diesen Tooltips lassen sich darüber hinaus Wartungsaufträge via Twitter triggern:

 

Anstatt auf eine Störung zu reagieren, können Servicetechniker somit auf Vorhersagen zurückgreifen. Damit agieren sie bereits vor einem Ausfall des Aufzugs entsprechend. Techniker sind somit in der Lage einen Aufzug aus der Ferne in den Diagnosemodus zu versetzen und ihn auf einer bestimmten Etage zu parken. All dies führt zu weniger Anfahrtszeiten, gesteigerter Effizienz und geringeren Kosten.

Dieses und weitere Beispiele zeige ich auf meinem Vortrag “Industry 4.0: Self Service BI and Predictive Maintenance“ im Rahmen des IBI Symposium am 17. November 2016 in Stuttgart.

[Update 24 Mar 2017]: Das Predictive Maintenance Dashboard wird außerdem auf der CeBIT 2017 im Rahmen der „neuen datenbasierten Geschäftsmodelle und Big Data bei der DB“ vorgestellt:

7 Fragen, die Unternehmen helfen ihr Ergebnis mit Social Media zu steigern

Twitter Sentiment Analysis: klicken, um interaktives Dashboard zu öffnen
Twitter Sentiment Analysis: klicken, um interaktives Dashboard zu öffnen

Ist der Einsatz sozialer Netze in Ihrem Unternehmen auf Marketing beschränkt, und lässt dadurch Chancen ungenutzt?

Noch immer schöpfen viele Unternehmen in Deutschland die Möglichkeiten von Social Media nur unzureichend aus. Die meisten Firmen nutzen Social Media lediglich als Marketinginstrument, senden zum Beispiel in Intervallen die gleichen Inhalte. Wesentlich weniger Unternehmen setzen Social Media dagegen in der externen Kommunikation, in Forschung und Entwicklung, zu Vertriebszwecken, oder im Kundenservice ein.

Nachfolgend betrachten wir die Twitter-Kommunikation von vier Social-Media-affinen Unternehmen etwas näher, und zeigen anhand sieben Fragestellungen was sie anders machen und wo die übrigen Nachholbedarf haben.

1. Wann und wie werden Tweets gesendet?

Ein Blick auf das Histogram lässt auf reichlich Interaktion schließen (Tweets und Replies), während das Weiterverbreiten von Tweets (Retweets) eher sporadisch auftritt:

 

2. Wie umfangreich sind die Tweets?

Wie es scheint, reitzen die meisten Tweets die von Twitter vorgesehenen 140 Zeichen aus – oder sind zumindest nahe dran:

 

3. An welchen Wochentagen wird getweetet?

Am Wochenende lässt die Kommunikation via Twitter nach. Die Verteilung der Emotionen bleibt dabei gleich, unterscheidet sich aber von Unternehmen zu Unternehmen:

 

4. Zu welcher Tageszeit wird getweetet?

Auch nachts werden weniger Tweets verfasst. Bei Lufthansa kommt es dabei recht früh zu einem Anstieg durch Pendler-Tweets, etwas später tritt dieser Effekt bei der Deutschen Bahn ein: 

 

5. Welche Art der Kommunikation herrscht vor?

Der hohe Anteil an Replies bei Telekom, Deutsche Bahn und Lufthansa impliziert, dass diese Unternehmen Twitter stark zum Dialog nutzen. Unter den Tweets der Deutsche Bank ist hingegen der Anteil an Retweets – insbesondere bei jenen mit Hashtag – deutlich höher, was auf einen höheren Nachrichtengehalt schließen lässt:

 

6. Welche User sind besonders aktiv?

Nun betrachten wir die Twitter-User, welche die entsprechend Twitter-Handles der Unternehmen besonders intensiv nutzen:

 

7. Welche Tweets erzeugen Aufmerksamkeit?

Diese Frage lässt sich am besten interaktiv im Dashboard (siehe auch Screenshot oben) untersuchen. Entscheidend ist bei dieser Betrachtung die Ermittlung der Emotion durch eine Sentiment-Analyse.

Je nach Emotion und Kontext ist es vor allem für das adressierte Unternehmen von Interesse rechtzeitig und angemessen zu reagieren. So lässt sich eine negative Stimmung frühzeitig relativieren, und so Schaden an der Marke abwenden. Positive Nachrichten können hingegen durch Weiterreichen als Multiplikator dienen.

Predictive Maintenance Beispiele: 4 Methoden zur Kostenoptimierung durch Predictive Maintenance

Predictive Maintenance Beispiele: PdM Dashboard auf Tableau Mobile und IoT Realtime Feed auf Tableau Desktop
Predictive Maintenance Beispiele: PdM Dashboard auf Tableau Mobile und IoT Realtime Feed auf Tableau Desktop

Einführung: Warum ist Predictive Maintenance wichtig?

Instandhaltungskosten tragen wesentlich zu den Produktionskosten bei, wobei sie je nach Branche auf 15 bis 60 Prozent der Gesamtkosten geschätzt werden. Predictive Maintenance (PdM), die vorausschauende Instandhaltung, hat das Potenzial, diese Kosten deutlich zu senken.

Unsere Erfahrungen und die ausführlichen Beispiele in meinem Buch zur Digitalisierung Decisively Digital: From Creating a Culture to Designing Strategy (Amazon) zeigen, dass Predictive Maintenance die Gesamtkosten einer Maschine während ihrer gesamten Lebensdauer reduzieren kann.

Das Prinzip von Predictive Maintenance

Predictive Maintenance zielt darauf ab, den Ausfall einer Maschine vorherzusagen und somit die Wartung zu optimieren. Die Wartungsarbeiten erfolgen nur dann, wenn ein Ausfall voraussichtlich eintreten wird. Doch wie lässt sich diese Vorhersage treffen?

Jene Vorhersagen, die häufig im Kontext mit Industrie 4.0 gesehen werden, lassen sich auf Grundlage folgender Fakten treffen:

  • Aktuelle Sensordaten: Wie verhält sich die Maschine gegenwärtig?
  • Historische Sensordaten: Wie hat sich die Maschine in der Vergangenheit verhalten?
  • Benachbarte Sensordaten: Wie haben sich andere, ähnliche Maschinen verhalten?
  • Instandhaltungsprotokoll: Wann wurde die Maschine zuletzt gewartet oder getauscht?
  • Instandhaltungsempfehlung: Welche Wartungsintervalle empfiehlt der Hersteller?

Methoden zur Interpretation von IoT-Daten

Solche Daten aus dem Internet der Dinge (IoT) lassen sich nun nicht ohne weiteres sinnvoll auf einem Dashboard darstellen. Ein Blick auf die bloßen Daten lässt hier kaum Schlüsse zu. So ist es für erfolgreiches Predictive Maintenance essentiell, dass statistische Methoden wie diese angewandt werden:

1. Mustererkennung: Durch das Identifizieren von Mustern zwischen bestimmten Ereignissen und Maschinenausfällen können wir voraussagen, wann und warum eine Maschine ausfallen könnte. Zum Beispiel könnte eine Maschine, die bei der Verarbeitung eines bestimmten Materials besonders belastet wird, eher ausfallen.

2. Trendmodell: Ein Trendmodell gibt den zeitlichen Verlauf der Maschinenperformance bis zu einem Ausfall wieder. Dies kann durch verschiedene Regressionsansätze modelliert und in drei Komponenten unterteilt werden: Trend, Saison und Rauschen.

3. Ereigniszeitanalyse: Die Analyse historischer Daten zu Ausfällen liefert ein weiteres Modell, das gegen aktuelle Messdaten gelegt werden kann, um damit die Dauer bis zum nächsten Ausfall bestimmen zu können.

4. Kritische Schwellwerte: Eine Überprüfung, ob bestimmte Schwellenwerte überschritten wurden, kann ebenfalls Hinweise auf einen bevorstehenden Ausfall geben. Diese Schwellenwerte können initial von Experten festgelegt und später durch maschinelles Lernen angepasst werden.

Diese Methoden lassen sich zum Beispiel in Python und R implementieren. Die Resultate zeigen konkrete Handlungsempfehlungen und eignen sich somit ausgezeichnet für Dashboards, die auch auf Tablets oder Smartphones gut zur Geltung kommen und fortlaufend aktualisiert werden.

Feedback und weiterführende Literatur

Wenn Sie mehr über Predictive Maintenance und über die Anwendung von digitalen Strategien in Ihrer Organisation erfahren möchten, empfehle ich Ihnen mein Buch Decisively Digital: From Creating a Culture to Designing Strategy (Amazon).

Was sind Ihre Gedanken zu Predictive Maintenance? Welche Daten und Methoden nutzen Sie für Ihre Instandhaltungsstrategie? Ich freue mich auf Kommentare und Anregungen. Teilen Sie uns Ihre Erfahrungen und Vorschläge in den Kommentaren mit:

Update: Predictive Maintenance mit Tableau wird außerdem auf der CeBIT am Stand der Deutschen Telekom im Rahmen von „Echtzeit-Analysen von Maschinendaten und externen Datenquellen“ vorgestellt:

„Predictive Maintenance Beispiele: 4 Methoden zur Kostenoptimierung durch Predictive Maintenance“ weiterlesen

KPMG Global Automotive Executive Survey 2016

KPMG Global Automotive Executive Survey 2016: click to open interactive story
KPMG Global Automotive Executive Survey 2016: click to open interactive story

In the recent months, 800 automotive executives from 38 countries gave their insights to KPMG. You can discover the key highlights of the KPMG Global Automotive Executive Survey in this eye-catching interactive Tableau story.

This is a fabulous example how you can use stories to present a narrative to an audience. Just as dashboards provide spatial arrangements of analysis that work together, stories present sequential arrangements of analysis that create a narrative flow for your audience.

Generation Y: Was erwarten Digital Natives von der Arbeitswelt?

Seattle: Space Needle
Innovation kann nicht diktiert werden, sondern muss erwünscht sein

Die Generation Y, zwischen 1977 und 1998 geboren, gilt als sehr gut ausgebildet. Sie sind als Digital Natives in der digitalen Welt aufgewachsen und rasche Veränderung gewohnt. Sie gelten als kreativ und technikaffin. Wären dies nicht die idealen Kandidaten, um die Digitalisierung bei Banken voranzutreiben, um Datenschätze mittels Data Science zu erschließen und um Fachwissen, Geschäftsverständnis und Kreativität zu vereinen?

Als potentieller Arbeitgeber stellt sich darüber hinaus noch eine viel wesentlichere Frage: Wie komme ich an die High Potentials dieser Generation und wie kann ich sie halten? Tatsächlich besteht für etablierte Unternehmen sogar akuter Handlungsbedarf, um weiterhin als Arbeitgeber attraktiv zu bleiben. Allein mit höheren Gehältern und Prestige klappt das nicht. Es ist vielmehr die intrinsische Motivation und die Sinnfrage, die hier zum Zuge kommen.

Traditionelle Unternehmenskulturen sind eine Hürde für die Generation Y und der Digitalen Transformation gleichermaßen. Heute verändern sich die Märkte so rasant, dass Unternehmen nur erfolgreich sein können, wenn sie zügig antizipieren und reagieren. Jedoch setzen die meisten Unternehmen mehr auf Risikominimierung als auf Entscheidungsfreiheit und Fortschritt: Informationen werden zurückgehalten oder gefiltert, Strukturen und Prozesse sind verkrustet und aufgebläht, tatsächliche Entscheidungen werden nur von wenigen getroffen und nur zögerlich kommuniziert.

Dies steht den Digital Natives im Weg. Die Generation Y braucht eine Arbeitsatmosphäre, die zu ihr passt. Dies muss in die Kultur der Unternehmen übergehen, in die Arbeitsweise und Entscheidungsphilosophie. Bürokratie muss auf ein Minimum reduziert werden, um schnelles Handeln zu ermöglichen. Innovation kann nicht diktiert werden, sondern muss erwünscht sein. Ideen können durch jeden, überall und zu jeder Zeit entstehen – man muss ihnen nur den Freiraum geben.