Machine Learning kompakt: Alles, was Sie wissen müssen

Machine Learning Kompakt Cover und Deep-Learning-Kapitel
Machine Learning kompakt und Blick in das Kapitel “Neuronale Netze und Deep Learning”

Nachdem ich bereits Erfahrung als Buchautor (hier und hier) gesammelt habe, hatte ich kürzlich die Gelegenheit als Technical Reviewer ein sehr spannendes Buchprojekt zu unterstützen. Das Buch Machine Learning kompakt: Alles, was Sie wissen müssen, geschrieben von Andriy Burkov, fand ich dabei dermaßen interessant, dass ich es gerne im Folgenden kurz vorstellen werde:

Machine Learning kompakt von Andriy Burkov ist ein hervorragend geschriebenes Buch und ein Muss für jeden, der sich für Machine Learning interessiert.

Andriy Burkov gelang ein ausgewogenes Verhältnis zwischen der Mathematik, intuitiven Darstellungen und verständlichen Erklärungen zu finden. Dieses Buch wird Neulingen auf dem Gebiet als gründliche Einführung zu Machine Learning zugutekommen. Darüber hinaus dient das Buch Entwicklern als perfekte Ergänzung zu Code-intensiver Literatur, da hier die zugrunde liegenden Konzepte beleuchtet werden.

Microsoft Azure Machine Learning Studio
Microsoft Azure Machine Learning Studio

Machine Learning kompakt eignet sich außerdem als Lehrbuch für einen allgemeinen Kurs zu Machine Learning. Ich wünschte, ein solches Buch gäbe es, als ich studiert habe!

Protip: viele der im Buch vorgestellten Machine-Learning-Algorithmen können Sie einfach und bequem in Microsoft Azure Machine Learning Studio selbst ausprobieren: https://aka.ms/mlst

Machine Learning kompakt: Alles, was Sie wissen müssen (mitp Professional)
  • Andriy Burkov
  • Publisher: mitp
  • Edition no. 2019 (30.06.2019)
  • Broschiert: 200 pages

Tableau: How to find the most important variables for determining Sales

Random Forest Animation
Interactive dashboard displaying the most important variables for determining the Sales measure in Tableau 10.0 (click screenshot to enlarge)

During the Q&A session of a recent talk on Data Strategy, I was challenged with a rather technical question: I was asked how to identify the variables that are heavily influencing a certain measure – with an interactive solution that matches a modern data strategy as suggested in my presentation.

Of course, this could be done by executing a script. The result however would be static and it would be not convenient for a Business Analyst to run it over and over again. Instead of applying a script every time the data changes, it would be much more innovative to get the answer immediately with every data update or interactivity such as a changed filter.

So why not solve this with Tableau? The magic underneath this easy-to-use Tableau dashboard is a nifty R script, embedded in a calculated field. This script calls a statistical method known as Random Forest, a sophisticated machine learning technique used to rank the importance of variables as described in Leo Breiman’s original paper.

The Tableau Packaged Workbook (twbx) is available here. Do you have more ideas or use cases? Feel free to leave a comment or send me an email: aloth@tableau.com