Datenvisualisierung mit Tableau: Tableau-Buch ab sofort vorbestellbar

Das erste deutschsprachige Tableau-Buch enthält auch ein Kapitel zur Datenaufbereitung mit Tableau Prep
Das erste deutschsprachige Tableau-Buch enthält auch ein Kapitel zur Datenaufbereitung mit Tableau Prep

Mein Buch „Datenvisualisierung mit Tableau“ kann ab sofort vorbestellt werden:

Bevor ich nun selbst viel zum Buch schreibe, gebe ich einfach mal einen Auszug aus dem Umschlagtext wieder:

Visualisieren Sie Ihre Daten schnell und ausdrucksstark mit Tableau, um praktisch umsetzbare Ergebnisse zu erhalten. Alexander Loth zeigt Ihnen Schritt für Schritt, wie Sie ganz einfach visuelle Analysen erstellen und so selbst komplexe Datenstrukturen verstehen sowie gewonnene Erkenntnisse effektiv kommunizieren können.

Das Buch richtet sich an:

  • Menschen, die Zugang zu Daten haben und diese verstehen möchten
  • Führungskräfte, die Entscheidungen auf Grundlage von Daten treffen
  • Analysten und Entwickler, die Visualisierungen und Dashboards erstellen
  • angehende Data Scientists

Zum Verständnis dieses Buches sind weder besondere mathematische Fähigkeiten noch Programmiererfahrung nötig. Es eignet sich daher auch für Einsteiger und Anwender, die sich dem Thema Datenvisualisierung und -analyse praxisbezogen und ohne ausschweifende theoretische Abhandlungen, nähern möchten.

Die grundlegenden Funktionen von Tableau werden Schritt für Schritt erläutert und Sie lernen, welche Visualisierungsmöglichkeiten wann sinnvoll sind. Der Autor zeigt Fallbeispiele auf, die weit über eine »Standard-Analyse« hinausreichen und geht auf Funktionen ein, die selbst erfahrenen Nutzern oft nicht hinlänglich bekannt sind. Sie erhalten außerdem Hinweise und Tipps, die das Arbeiten mit Tableau erleichtern, und können so zukünftig Ihre eigenen Daten bestmöglich visualisieren und analysieren.

Update 25 Jul 2018: Hier ist das erste Exemplar ganz druckfrisch:

Digitale Banken: Welche Digitalisierungstrends bewegen die Finanzbranche 2018?

Immersive und interaktive Analyse von Finanzdaten mit Argumented Reality
Immersive und interaktive Analyse von Finanzdaten mit Argumented Reality (Blockchain-Dashboard)

Jedes Jahr (2015, 2016, 2017 und 2018) stelle ich Digitalisierungstrends vor, die der Finanzbranche ein großes Potenzial bieten. Dabei geht es vor allem um einen Überblick darüber, welche Trends und Technologien zukünftig eine größere Rolle spielen werden oder könnten.

Im Folgenden habe ich die fünf Digitalisierungstrends identifiziert, die für Banken und Versicherungen in Zukunft besonders spannend sein dürften:

1. Maschine Learning

Maschine Learning und Deep Learning werden im Investment Banking angewandt, um Unternehmensbewertungen schneller und zuverlässiger durchzuführen. Mehr Daten denn je können hinzugezogen werden. Eine Gewichtung der Daten erfolgt komplett autonom. Da manuelle Analyse weitgehend entfällt, werden Entscheidungsprozesse drastisch beschleunigt. Investoren, die mit konventionellen Werkzeugen arbeiten, haben das Nachsehen.

2. Künstliche Intelligenz

Durch Künstliche Intelligenz gesteuerte Chatbots vermitteln den Kunden eine menschlichen-ähnliche Betreuung. Chatbots werden darüber hinaus in existierende Cloud-basierende Assistenten, wie Alexa oder Siri, eingebunden und sind in der Lage mittels Natural Language Processing, auch komplexere Anfragen zu verstehen. Recommender-Systeme liefern maßgeschneiderte Lösungen, die speziell auf die Bedürfnisse der Kunden abgestimmt sind.

3. Internet of Things

Wearables und in Kleidung eingearbeitete Sensoren (Internet of Things, IoT) liefern ausreichend Daten, um den Lebensstil der Kunden vollständig zu vermessen. Dadurch können individuelle Raten für Versicherungen und Finanzprodukte berechnet werden. Außerdem bieten die IoT-Daten eine weitere Datenquelle für die Recommender-Systeme.

4. Blockchain

Verträge werden kostengünstig, fälschungssicher und irreversibel in der Blockchain gespeichert. Die Blockchain dienst sogenannten Smart Contracts als dezentrale Datenbank. Darüber hinaus liefern Blockchain-Implementierungen, wie Ethereum, das Ausführen von Logik, die beispielsweise monatliche Zahlungen prüfen und ggf. auch die Erfüllung von Vertragsbestandteilen (z.B. im Schadenfall) steuern.

5. Argumented Reality

Arbeitsplätze werden mit Technik ausgestattet, die Argumented Reality ermöglicht. Lösungen wie Microsoft’s Hololense ermöglichen Analysten und Händlern eine immersive und interaktive Analyse von Finanzdaten in Echtzeit. Insbesondere fällt dadurch auch die Zusammenarbeit mit Kollegen leichter, da Plattformen zur visuellen Kollaboration traditionelle Meetings weitgehend ablösen.

Welcher ist der 6. Trend?

Helfen Sie den 6. Digitalisierungstrend zu benennen? Nehmen Sie hierzu an der Twitter-Umfrage teil. Selbstverständlich freue ich mich auch über Kommentare und eine spannende Diskussion.

Data Operations: Daten für die Analyse optimal vorbereiten

#dataops: Folgen Sie der Diskussion auf Twitter
#dataops: Folgen Sie der Diskussion auf Twitter

Kürzlich habe ich einige Blog-Posts zum Thema Datenstrategie veröffentlicht. Für viele Unternehmen geht die Entwicklung und Einführung einer Datenstrategie nicht tief genug. Häufig habe ich ähnliches gehört: „So weit ist unser Unternehmen noch gar nicht. Wir haben noch viel operativ vorzubereiten, bevor wir eine Datenstrategie voll umfänglich etablieren können.“

Ich habe in diesen Gesprächen nachgehakt, wo diese grundlegenden Lücken in den Unternehmen bestehen, und entschlossen eine neue Blog-Post-Serie aufzusetzen, um zum Thema Data Operations (#dataops) konkrete und einfach umsetzbare Vorschläge zu geben.

Daten für die Analyse vorbereiten

Eine der wesentlichen Fragen, die sich Datenanalysten immer wieder stellen, lautet: „Gibt es eine Möglichkeit meine Daten für die Verwendung mit Analysewerkzeugen, wie Tableau, optimal vorzubereiten?“

Daten können auf unterschiedliche Arten strukturiert sein. Die meisten neuen Tableau-Anwender erliegen der Versuchung, Tableau mit einem bereits formatierten und voraggregierten Excel-Bericht (siehe Abbildung 1.1) zu verbinden und diesen in Tableau zu visualisieren. Heißt es nicht mit Tableau können Daten jeder Art einfach und intuitiv verwenden werden? Sehr schnell stellt man fest, dass ein solches Vorgehen nicht funktioniert, wie erwartet und sich so auch keine Visualisierungen erstellen lassen.

Abbildung 1.1: Bereits formatierter und voraggregierter Excel-Bericht
Abbildung 1.1: Bereits formatierter und voraggregierter Excel-Bericht

Dieses Szenario, dem viele Einsteiger begegnen, ist nicht ungewöhnlich und tatsächlich ein häufiger Stolperstein bei der Einarbeitung in Tableau, der die Analyse Ihrer Daten erschweren kann.

Die folgenden Punkte zeigen Ihnen Vorschläge zur sauberen Vorbereitung Ihrer Daten anhand des Beispielberichts:

  • Verzichten Sie auf den einleitenden Text („Temperaturmessung zum Monatsbeginn“).
  • Überführen Sie hierarchische Überschriften („Frankfurt“, „Berlin“) auf eine Spalteninformation (neue Spalte „Ort“).
  • Pivotisieren Sie Daten von einer „weiten“ Kreuztabelle mit Variablen in Spalten („Früh“, „Mittag“, „Abend“) in eine „lange“ Tabelle, die die Variablen stets in den Zeilen trägt (in diesem Beispiel die Uhrzeit).
  • Nutzen Sie vollständige Datums- und ggf. Zeitformate („01.04.2018 06:00“) anstatt z.B. nur den Monatsnamen („April“).
  • Überprüfen Sie, dass Zahlen im Zahlenformat und nicht im Textformat gespeichert sind.
  • Verzichten Sie voraggregierte Daten („Durchschnitt“, „Gesamtdurchschnitt“).
  • Entfernen Sie leere Zeilen.
  • Achten Sie darauf, dass jede Spate eine aussagekräftige Spaltenüberschrift trägt.

Haben Sie diese Vorschläge befolgt, ist aus Ihrer „weiten“ Kreuztabelle nun eine „lange“ Zeilen-basierte Tabelle geworden, und damit die perfekte Basis zur umfangreichen Datenanalyse (siehe Abbildung 1.2).

Abbildung 1.2: Zur Datenanalyse geeignete „lange Tabelle“ ohne Aggregationen
Abbildung 1.2: Zur Datenanalyse geeignete „lange Tabelle“ ohne Aggregationen

Dieser Beitrag ist der dritte Teil der Data-Operations-Serie:

Teil 1: Daten für die Analyse optimal vorbereiten
Teil 2: Wann sollten Sie Datenextrakte und wann Live-Verbindungen verwenden
Teil 3: Wie Sie die Performance Ihrer Datenanalyse und Dashboards steigern

Außerdem ist dieser Blog-Post ein Auszug aus dem Buch „Datenvisualisierung mit Tableau„, das am 31. Juli 2018 erscheinen wird:

Data Strategy: Erstickt Innovation zwischen Berichtswesen und Data Discovery?

Abbildung 4: Interaktives Dashboard zur Darstellung von variablen Abhängigkeiten in Tableau
Abbildung 4: Interaktives Dashboard zur Darstellung von variablen Abhängigkeiten mit TensorFlow in Tableau

Der erste Schritt auf dem Weg zu besserer Entscheidungsfindung im Unternehmen, ist zu verstehen, wie gute (oder schlechte) Entscheidungen zustande kamen. Genau wie manche Unternehmen formale Prozesse für Aktivitäten haben, wie z. B. What-if-Analysen, prädiktive Wartung und Bestimmung von Abhängigkeiten in Korrelationen (siehe Abbildung 4), so müssen sie formale Prüfprozesse für Entscheidungen im gesamten Unternehmen einführen. Dies soll jedoch keinesfalls dazu dienen, die an schlechten Entscheidungen Beteiligten zu bestrafen, sondern den Entscheidungsfindungsprozess und -stil des Unternehmens im Allgemeinen verbessern.

Die Rolle der IT nähert sich hierbei wieder ihren Wurzeln an und statt eine Berichtefabrik für den Rest des Unternehmens zu unterhalten, wird die IT wieder zum Dienstleister und Partner, der die Infrastruktur für eine Data Discovery bereitstellt. IT-Mitarbeiter werden entlastet und erhalten den Freiraum, ihre professionelle Energie und Kreativität in den Dienst der Innovation zu stellen, und die Mitarbeiter in den Abteilungen sehen ihre Datenfragen nicht am Flaschenhals Berichtswesen verhungern. Nur so lassen sich die Investitionen in Business Intelligence und Analytics optimal in den Dienst der strategischen Ziele des Unternehmens stellen.

Abbildung 5: Anforderungen, Fähigkeiten und Ziele einer Datenstrategie (TC17-Präsentation)
Abbildung 5: Anforderungen, Fähigkeiten und Ziele einer Datenstrategie (TC17-Präsentation)

Moderne Unternehmen sehen sich vielen analytischen Anforderungen (siehe Abbildung 5) gegenüber, und diese Anforderungen werden unweigerlich schneller wachsen, als Unternehmen sie bedienen können. Es ist daher unerlässlich, Analytics als lebenswichtigen Teil der eigenen Datenstrategie zu verstehen und entsprechend zu planen.

Dabei ist ein umfassender Betrachtungswinkel sinnvoll, denn die wachsende Nachfrage nach Analysen und Erkenntnissen wird mehr und mehr von den kundenbezogenen Abteilungen wie Marketing oder Support ausgehen. Dementsprechend wird auch das Budget für Analytics verstärkt aus diesen Abteilungen kommen, statt aus einem zentralisierten IT- oder BI-Budget. Dort, wo viele Kundendaten vorhanden sind, wird der CMO bald mehr für Analytics ausgeben als der CIO. Und dort, wo Mitarbeiter über gut integrierte, intuitive Werkzeuge für komplexe Analysen verfügen, können gute Instinkte und datenbasierte Entscheidungen Hand in Hand für den Erfolg sorgen.

Dieser Beitrag ist der fünfte Teil der Datenstrategie-Serie:

Teil 1: Die Notwendigkeit einer modernen Datenstrategie im Zuge der digitalen Transformation
Teil 2: Steigern smarte Erkenntnisse den Business Impact?
Teil 3: 10 BI & Analytics Trends, die in keiner Datenstrategie fehlen dürfen
Teil 4: Wie unterstützen Analysen Ihre Entscheidungsfindung?
Teil 5: Erstickt Innovation zwischen Berichtswesen und Data Discovery?

TC17 Data Strategy Title Slide Möchten Sie mehr zu den neuesten Trends im Bereich Datenstrategie erfahren? Dann freue ich mich, wenn Sie an meinem Vortrag „Building an Enterprise Big Data & Advanced Analytics Strategy“ auf unserer Tableau Conference TC17 (9.-12. Okt., Las Vegas) teilnehmen.

Digitale Banken: Die Chancen von Blockchain, Künstlicher Intelligenz und Machine Learning

Commerzbank Tower
Commerzbank Tower: Zahlt sich für Banken die Kooperation mit Fintechs aus? (Foto: Flickr)

Die Zukunft im Finanzwesen bleibt vielversprechend und spannend. Haben uns kürzlich noch Innovationen in der Erschließung neuer Märkte und in der Vermögensverwaltung beschäftigt, so sind es heute mehr denn je die raffinierten datengetriebenen Technologien, die in den Vordergrund gerückt sind.

Anfang dieses Jahres startete Futura Analytics, ein Fintech, das enorme Datenmengen und maschinelle Lernmodelle nutzt, um Regeln zur Risikobewertung in Echtzeit umzuschreiben. Futura Analytics verwandelt Daten aus Twitter und anderen öffentlichen Quellen in nutzbare Signale und identifiziert die relevantesten Informationen in Echtzeit für Kunden im Finanzsektor (Beispiel: Bitcoin/Sentiment-Analyse).

Künstliche Intelligenz ist Teil der Zukunft

Banken und Fintechs nutzen die künstliche Intelligenz und die immer besser werdende Verarbeitung von natürlicher Sprache, um Kunden einen besseren Zugang zu Finanzdienstleistungen zu ermöglichen. Produktempfehlungen basierend auf Mustererkennung hilft die passende Dienstleistung anzubieten. Natürliche Sprache wird zu einer Vereinfachung von Zahlungsinteraktionen führen.

M2M-Lösungen rationalisieren Cloud-basierte Authentifizierung

Zwillingstürme der Deutschen Bank
Deutsche Bank (Foto: Flickr)

Allerdings müssen Zahlungsinteraktionen direkt von Gerät zu Gerät immer noch Barrieren überwinden, wie z.B. das Gewährleisten einer nahtlose Authentifizierung zwischen den Endgeräten. Bis solche M2M-Lösungen (Machine-to-Machine) mit nahtloser Authentifizierung herstellerübergreifend verfügbar ist, werden sich Geräte weiterhin über Services in der Cloud authentifizieren, bevor Transaktionen ausgeführt werden.

Gamification schafft Anreize für mobile Bezahlung

Mobiles Bezahlen am Point-of-Sale haben sich noch immer nicht flächendeckend durchgesetzt. Obwohl Unternehmen in Zahlungsterminals bereitstellen, fehlt es an Anreizen, um die Nutzer dazu zu ermutigen, mit ihren mobilen Geräten zu bezahlen. Banken haben schon damit begonnen die kostenlose Bargeldversorgung einzuschränken. Fintechs können dem Handel mit Gamification helfen das mobile Zahlen für Kunden attraktiver machen.

Blockchain ermöglicht kostengünstige Transaktionsüberprüfung

Die Rolle der Blockchain-Technologie bei der Bereitstellung einer verteilten Transaktionshistorie weckt großes Interesse im Zahlungs- und Handelsökosystem. Die Technologie macht Transaktionsgebühren, die Anbieter wie PayPal für das Sicherstellen von Transaktionen erhoben haben, hinfällig. Die Nutzung der Blockchain zur kostengünstigen Überprüfung von Transaktionen wird bei Banken oben auf der Agenda stehen.

Maschinelles Lernen verbessert die Zahlungssicherheit

Durch die Digitalisierung von Zahlungen muss die Zahlungssicherheit über eine breite Palette an Endgeräten gewährleistet werden. Geräte können ein erhöhtes Risiko gegenüber fortgeschrittenen Angriffen aufweisen. Bei der Gestaltung von sicheren Zahlungsmethoden erkennt maschinelles Lernen das Verhalten und greift ein, wenn ein solches Verhalten auf ungewöhnliche Verhaltensweisen oder Transaktionsaktivitäten hindeutet.