How to Research LinkedIn Profiles in Tableau with Python and Azure Cognitive Services in Tableau

Azure Cognitive Services in Tableau: using Python to access the Web Services API provided by Microsoft Azure Cognitive Services
Azure Cognitive Services in Tableau: using Python to access the Web Services API provided by Microsoft Azure Cognitive Services

A few weeks after the fantastic Tableau Conference in New Orleans, I received an email from a data scientist who attended my TC18 social media session, and who is using Azure+Tableau. She had quite an interesting question:

How can a Tableau dashboard that displays contacts (name & company) automatically look up LinkedIn profile URLs?

Of course, researching LinkedIn profiles for a huge list of people is a very repetitive task. So let’s find a solution to improve this workflow…

Step by Step: Integrating Azure Cognitive Services in Tableau

1. Python and TabPy

We use Python to build API requests, communicate with Azure Cognitive Services and to verify the returned search results. In order to use Python within Tableau, we need to setup TabPy. If you haven’t done this yet: checkout my TabPy tutorial.

2. Microsoft Azure Cognitive Services

One of many APIs provided by Azure Cognitive Services is the Web Search API. We use this API to search for name + company + „linkedin“. The first three results are then validated by our Python script. One of the results should contain the corresponding LinkedIn profile.

3. Calculated Field in Tableau

Let’s wrap our Python script together and create a Calculated Field in Tableau:

SCRIPT_STR("
import http.client, urllib, base64, json
YOUR_API_KEY = 'xxx'
name = _arg1[0]
company = _arg2[0]
try:
headers = {'Ocp-Apim-Subscription-Key': YOUR_API_KEY }
params = urllib.urlencode({'q': name + ' ' + company + ' linkedin','count': '3'})
connection = http.client.HTTPSConnection('api.cognitive.microsoft.com')
connection.request('GET', '/bing/v7.0/search?%s' % params, '{body}', headers)
json_response = json.loads(connection.getresponse().read().decode('utf-8'))
connection.close()
for result in json_response['webPages']['value']:
if name.lower() in result['name'].lower():
if 'linkedin.com/in/' in result['displayUrl']:
return result['displayUrl']
break
except Exception as e:
return ''
return ''
", ATTR([Name]), ATTR([Company]))

4. Tableau dashboard with URL action

Adding a URL action with our new Calculated Field will do the trick. Now you can click on the LinkedIn icon and a new browser tab (or the LinkedIn app if installed) opens.

LinkedIn demo on Tableau Public

Is this useful for you? Feel free to download the Tableau workbook – don’t forget to add your API key!

Get More Insights

This tutorial is just the tip of the iceberg. If you want to dive deeper into the world of data visualization and analytics, don’t forget to order your copy of my new book, Visual Analytics with Tableau (Amazon).  This comprehensive guide offers an in-depth exploration of data visualization techniques and best practices.

I’d love to hear your thoughts. Feel free to leave a comment, share this tweet, and follow me on Twitter and LinkedIn for more tips, tricks, and tutorials on Azure Cognitive Services in Tableau and other data analytics topics.

Also, feel free to comment and share my Azure Cognitive Services in Tableau tweet:

#TC18 Sessions: Rock your Social Media Data with Tableau

My TC18 sessions in New Orleans: "Rock your Social Media Data with Tableau"
My TC18 sessions in New Orleans: „Rock your Social Media Data with Tableau“

Anyone can analyze basic social media data in a few steps. But once you’ve started diving into social analytics, how do you bring it to the next level? This session will cover strategies for scaling a social data program. You’ll learn skills such as how to directly connect to your social media data with a Web Data Connector, considerations for building scalable data sources, and tips for using metadata and calculations for more sophisticated analysis.

First session: Tues, 23 Oct,  12:30-1:30 (Location: MCCNO – L3 – 333)

Second session: Wed, 24 Oct, 10:15-11:15 (Location: MCCNO – L3 – 346)

Twitter Analysis #TC18 Dashboard featured as Tableau Public Viz of the Day
Twitter Analysis #TC18 Dashboard featured as Tableau Public Viz of the Day

Here are some key takeaways and links (i.e. additional resources) featured during my TC18 sessions to help you formulate your social media data program in order to build a stronger presence and retrieve powerful insights:

Prolog: Introducing data artist Noah

Step 1: Understand How to Succeed with Social Media

Apple has officially joined Instagram on 7th August 2017. This isn’t your average corporate account as the company doesn’t want to showcase its own products. Instead, Apple is going to share photos shot with an iPhone:

The Customer-Centric Data Strategy

Apple’s Instagram account is more an extension of the “Shot on iPhone” billboard ad campaign.

And there are plenty takeaways for every business:

  • Wrap your data around your customers, in order to create business value
  • Interact with your customer in a natural way
  • Understand your customer and customer behaviour better by analyzing social media data

Step 2: Define Your Social Objectives and KPIs

A previous record-holding tweet: In 2014, actor and talk show host Ellen DeGeneres took a selfie with a gaggle of celebrities while hosting the Oscars. That photo has 3.44 million retweets at the time of writing:

Social Objectives:

  • Define specific KPIs for social media platforms
  • KPI objectives need to be measurable
  • Metrics should be in line with the business goals

Step 3: Assemble Your KPIs

Brand Awareness and Reputation

Step 4: Connect Your Social Media with Tableau

Option 1 – Directly from the platform: Get data directly from Facebook, Twitter, YouTube, and more

Option 2 – Via web automation: Use a service like IFTTT to store data on Google Sheets

Option 3 – Via web data connector: Use Tableau’s web data connector, e.g. the Twitter Web Data Connector by Alex Ross (a.k.a. Tableau Junkie) -> http://bit.ly/tc18_twitter

Option 4 – Code your own solution: Use an API provided by the platform -> http://bit.ly/tc17_r_fetch

Option 5 – Via a third party platform: Get data from an integrated social media platform, such as Talkwalker -> http://bit.ly/tc17_talkwalker

Talkwalker - Via a Third Party Platform

Step 5: Apply some Tips to Level Up

Gather Historic Data

Step 6: Explore Social Media Listening

Social listening means that you look beyond your own content. E.g. Talkwalker offers AI for image recognition and ggregation for online/offline media: http://bit.ly/tc17_talkwalker

Step 7: Leverage Your Analytics Tool Chain

Use Your R and Python Skills

Demo/Tutorial: Let’s See this in Tableau!

How to analyse Social Media traffic with Google Analytics in Tableau (YouTube):

How to analyse Social Media data from Twitter in Tableau (YouTube):

Slide Set

The slides presented at Tableau Conference are also available on SlideShare.

Are you on Social Media?

Feel free to retweet/share:

[Update 25 Oct 2018]: Missed the sessions? Watch the recording online!

Das Tableau-Buch ist ab sofort im Handel erhältlich

Datenvisualisierung mit Tableau: Das erste deutschsprachige Tableau-Buch ist auch bei Amazon erhältlich
Datenvisualisierung mit Tableau: Das erste deutschsprachige Tableau-Buch ist auch bei Amazon erhältlich

Das erste deutschsprachige Buch zur Datenvisualisierung mit Tableau hat seinen Weg in die Buchhandlungen gefunden und steht nun allen Interessierten zur Verfügung. Ob Sie ein Anfänger oder ein erfahrener Experte in der Welt der Datenvisualisierung sind, dieses Buch bietet Ihnen wertvolle Einblicke und praxisorientierte Anleitungen.

Das erste deutschsprachige Tableau-Buch, Datenvisualisierung mit Tableau, ist ab sofort im Handel erhältlich bei:

Vorschau

Mehr erfahren zu Datenvisualisierung mit Tableau

Erfahren Sie mehr zu Datenvisualisierung mit Tableau auf der Webseite zum Tableau-Buch! Entdecken Sie die Themen, die das Buch abdeckt, und sehen Sie sich Rezensionen von anderen Lesern an. Dieses Buch wird Ihr Verständnis für Datenvisualisierung mit Tableau auf ein neues Level heben.

Update 11 Aug 2018: In den Informatikbücher-Top-20 bei Amazon!
Update 17 Aug 2018: In den Informatikbücher-Top-10 bei Amazon!

Datenvisualisierung mit Tableau: Tableau-Buch ab sofort vorbestellbar

Das erste deutschsprachige Tableau-Buch enthält auch ein Kapitel zur Datenaufbereitung mit Tableau Prep
Das erste deutschsprachige Tableau-Buch enthält auch ein Kapitel zur Datenaufbereitung mit Tableau Prep

Mein Buch „Datenvisualisierung mit Tableau“ kann ab sofort vorbestellt werden:

Bevor ich nun selbst viel zum Buch schreibe, gebe ich einfach mal einen Auszug aus dem Umschlagtext wieder:

Visualisieren Sie Ihre Daten schnell und ausdrucksstark mit Tableau, um praktisch umsetzbare Ergebnisse zu erhalten. Alexander Loth zeigt Ihnen Schritt für Schritt, wie Sie ganz einfach visuelle Analysen erstellen und so selbst komplexe Datenstrukturen verstehen sowie gewonnene Erkenntnisse effektiv kommunizieren können.

Das Buch richtet sich an:

  • Menschen, die Zugang zu Daten haben und diese verstehen möchten
  • Führungskräfte, die Entscheidungen auf Grundlage von Daten treffen
  • Analysten und Entwickler, die Visualisierungen und Dashboards erstellen
  • angehende Data Scientists

Zum Verständnis dieses Buches sind weder besondere mathematische Fähigkeiten noch Programmiererfahrung nötig. Es eignet sich daher auch für Einsteiger und Anwender, die sich dem Thema Datenvisualisierung und -analyse praxisbezogen und ohne ausschweifende theoretische Abhandlungen, nähern möchten.

Die grundlegenden Funktionen von Tableau werden Schritt für Schritt erläutert und Sie lernen, welche Visualisierungsmöglichkeiten wann sinnvoll sind. Der Autor zeigt Fallbeispiele auf, die weit über eine »Standard-Analyse« hinausreichen und geht auf Funktionen ein, die selbst erfahrenen Nutzern oft nicht hinlänglich bekannt sind. Sie erhalten außerdem Hinweise und Tipps, die das Arbeiten mit Tableau erleichtern, und können so zukünftig Ihre eigenen Daten bestmöglich visualisieren und analysieren.

Update 25 Jul 2018: Hier ist das erste Exemplar ganz druckfrisch:

Join my Social Media Analytics sessions at Tableau Conference #TC18

Are you ready for Tableau Conference 2018? Don’t miss my Social Media Analytics sessions!

Why do we need Social Media Analytics?

Social Media Analytics transforms raw data from social media platforms into insight, which in turn leads to new business value.

What will your learn in this sessions?

Once you dive into Social Media Analytics, how do you bring it to the next level? Social data can offer powerful insights right away. In this session, you will learn how to build a mature social data program from that foundation and strategies for scaling a social data programme, as well as how to connect directly to your social media data with a web data connector; considerations for building scalable data sources; and tips for using metadata and calculations for more sophisticated analysis.

Where and when are the sessions?

Do you want to learn more about Social Media Analytics with Tableau? Meet me at the 2018 Tableau Conferences in London or New Orleans and join my sessions:

Anything to prepare?

Yes, I’m glad that you ask:

[Update 5 Jul 2018]:

[Update 6 Jul 2018]: