How to speed up Tableau by using Performance Recordings

Tableau Performance Recording Timeline
Tableau Performance Recording Timeline

Getting your dashboards up to speed can be quite difficult if you don’t know where the latency is situated. The first and most important rule about making workbooks more efficient is to understand that if it loads slowly in Desktop on your computer, then it will be slow on the server too once it is published. Tableau Desktop and Tableau Server each have their own way to enable, record, and analyze performance.

A must have for performance tuning your workbooks. All you have to do is start the Tableau Performance Recording, make your workbook action and stop the Performance Recording. A few seconds later, Tableau opens a new workbook with the Performance Summary dashboard in it.

Create a performance recording in Tableau Desktop

  1. To start recording performance, follow this step: Help > Settings and Performance > Start Performance Recording
  2. Make some dashboard operations and/or refresh your data source(s).
  3. To stop recording, and then view a temporary workbook containing results from the recording session, follow this step: Help > Settings and Performance > Stop Performance Recording
  4. You can now view the Performance Summary dashboard and begin your analysis.

Create a performance recording on Tableau Server

  1. Administrators must enable the feature. This is located under settings, for each site.
  2. Check the box and save for Workbook Performance Metrics.
  3. Navigate to a view on the server.
  4. Remove the iid=xx from the URL.
  5. Enter in its place record_performance=yes. Your full URL should now look something like this: https://data.alexloth.com/#/site/AA/views/Superstore/Summary?:record_performance=yes
  6. After the page reloads, you’ll notice the ID is added automatically back to the URL and that a performance button appears within the View’s toolbar. Don’t click on the performance button yet.
  7. Do some filtering and some clicking within the workbook such as applying filters, selecting marks/rows, and clicks that cause actions to other elements of the visualization.
  8. Then click the performance button.
  9. Now you’re ready to click on the Performance button which will launch a new window with the Performance Summary dashboard.
  10. Don’t forget to disable the performance recording in the admin settings when you are finished.

Understand the Performance Summery dashboard

The Performance Summery dashboard contains three views:

  • Timeline: a Gantt chart displaying event start time and duration.
  • Events sorted by time: a bar chart showing event duration by type.
  • Query text: It optionally appears when clicking-on an executing query event in the bar chart.

Time line Gantt chart

The uppermost view in a performance recording dashboard shows the events that occurred during the recording, arranged chronologically from left to right. The bottom axis shows elapsed time since Tableau started, in seconds.

In the Timeline view, the WorkbookDashboard, and Worksheet columns identify the context for the events. The Event column identifies the nature of the event, and the final column show each event’s duration and how it compares chronologically to other recorded events.

The events sorted by time

This section of the workbook shows the duration of recorded events in descending order. This is useful for observing the execution time of each event that occurs during the performance recording. This will help you identify any lengthy events that may be the cause of performance problems.
Events with longer durations can help you identify where to look first if you want to speed up your workbook.

Different colors indicate different types of events. The range of events that can be recorded is:

  • Computing layouts: If layouts are taking too long, consider simplifying your workbook.
  • Connecting to a data source: Slow connections could be due to network issues or issues with the database server.
  • Executing query: If queries are taking too long, consult your database server’s documentation.
  • Generating extract: To speed up extract generation, consider only importing some data from the original data source. For example, you can filter on specific data fields, or create a sample based on a specified number of rows or percentage of the data.
  • Geocoding: To speed up geocoding performance, try using less data or filtering out data.
  • Blending data: To speed up data blending, try using less data or filtering out data.
  • Server rendering: You can speed up server, rendering by running additional VizQL Server processes on additional machines.

Query text

Alternatively, the workbook also displays the query text for any specific event that you want to examine in detail. You can access the detail by clicking on any of the green executing query events in the bar chart. This is a handy feature which allows you to review any query text that may be of interest without having to leave the tableau performance summary dashboard.

If you click on an Executing Query event in either the Timeline or Events section of a performance recording dashboard, the text for that query is displayed in the Query section.

Data Science Toolbox: How to use R with Tableau

Recently, Tableau released an exciting feature that enhances the capabilities of data analytics: R integration via RServe. By bringing together Tableau and R, data scientists and analysts can now enjoy a more comprehensive and powerful data science toolbox. Whether you’re an experienced data scientist or just starting your journey in data analytics, this tutorial will guide you through the process of integrating R with Tableau.

Step by Step: Integrating R in Tableau

1. Install and start R and RServe

You can download base R from r-project.org. Next, invoke R from the terminal to install and run the RServe package:

> install.packages("Rserve")
> library(Rserve)
> Rserve()

To ensure RServe is running, you can try Telnet to connect to it:

Telnet

Protip: If you prefer an IDE for R, I can highly recommend you to install RStudio.

2. Connecting Tableau to RServe

Now let’s open Tableau and set up the connection:

Tableau 10 Help menu
Tableau 10 External Service Connection

3. Adding R code to a Calculated Field

You can invoke R scripts in Tableau’s Calculated Fields, such as k-means clustering controlled by an interactive parameter slider:

SCRIPT_INT('
kmeans(data.frame(.arg1,.arg2,.arg3),' + STR([Cluster Amount]) + ')$cluster;
',
SUM([Sales]), SUM([Profit]), SUM([Quantity]))
Calculated Field in Tableau 10

4. Use Calculated Field in Tableau

You can now use your R calculation as an alternate Calculated Field in your Tableau worksheet:

Tableau 10 showing k-means clustering

Feel free to download the Tableau Packaged Workbook (twbx) here.

Connect and Stay Updated

Stay on top of the latest in data science and analytics by following me on Twitter and LinkedIn. I frequently share tips, tricks, and insights into the world of data analytics, machine learning, and beyond. Join the conversation, and let’s explore the possibilities together!

Blog post updates:

Analyzing High Energy Physics Data with Tableau at CERN

Screenshot of Tableau 4.0 analyzing High Energy Physics Data at CERN
Screenshot of Tableau 4.0 analyzing High Energy Physics Data at CERN

About a year ago, I had a first try with Tableau and some survey data for a university project. Last week, I finally found time to test Tableau with High Energy Physics (HEP) data from CERN’s Proton Synchrotron (PS). Tableau enjoys a stellar reputation among the data visualization community, while the HEP community heavily uses Gnuplot and Python.

Tableau 4.0: Connect to Data
Tableau 4.0: Connect to Data

I was using an ordinary CSV file as data source for this quick visualization. Furthermore, Tableau can connect to other file types such as Excel, as well as to databases like Microsoft SQL Server, Oracle, and Postgres.

I’m also quite impressed by the ease and speed with which insightful analysis seems to appear out of bland data. Even though your analysis toolchain is script-based (as usual at CERN where batch processing is mandatory), I highly recommend using Tableau for prototyping and for ad-hoc data exploration.