Slowly the dust settles after the impressive TC18. During my wrap-up, I remembered the data warehouse benchmarks of the Azure & Tableau session by James Rowland-Jones. Especially because my customers ask me about such performance metrics over and over again.
The first benchmark (graph above) shows how Microsoft Azure SQL Data Warehouse (aka. SQL DW) outperforms Amazon Redshift – in terms of performance and price. While the second benchmark shows further performance tests for Amazon Redshift, Snowflake, Azure, Presto, and Google Big Query:
Since James‘ session is already available on Tableau’s Youtube channel, feel free to watch the entire Azure & Tableau session:
The Welcome Reception at #TC18 has officially started—from a parade (New Orleans themed, of course!) to networking with our #DataFam! 🎉 pic.twitter.com/SWWnicdTFq
This morning we kicked off #TC18 with 17,000 data rockstars! 🎉 We shared some exciting announcements including Ask Data, Tableau Prep Conductor, Tableau Developers Program, big news for Tableau Foundation, and more. Learn all about them: https://t.co/CiXWo8qtxOpic.twitter.com/pnWZJzYwma
Honoured & humbled to win the @mcristia Community Leader Award at the #Vizzies yesterday. This came as a complete surprise to me. Thank you to everyone that voted & a special thank you to @emily1852 & @Matt_Francis for renaming the award in honour of Michael #TC18#Tableaupic.twitter.com/tuXfL2aSQS
Nachdem Sie Ihre Daten für die Analyse optimal vorbereitet haben, stellt sich die Frage auf welche Weise Sie Ihre Daten bereithalten wollen, damit Sie schnell erste Erkenntnisse erhalten.
Tableau bietet Ihnen für die meisten Datenquellen die Möglichkeit, zwischen einer Live-Verbindung, also einer direkten Verbindung zur Datenbank, und einem Datenextrakt, also einem Abzug der Daten zu wählen. Wie Abbildung 1.1 zeigt, können Sie einfach zwischen beiden Verbindungstypen wechseln.
Live-Verbindungen ermöglichen Ihnen die Arbeit mit den Daten, wie sie zum momentanen Zeitpunkt auf der Datenbank oder der Datei vorliegen. Wenn Sie Daten extrahieren, importieren Sie einige oder alle Daten in die Data Engine von Tableau. Dies gilt sowohl für Tableau Desktop als auch für Tableau Server. Welche Verbindungsmethode Sie bevorzugen sollten, hängt von Ihrer Situation und dem Anwendungsfall, Ihren Anforderungen sowie von der Verfügbarkeit der Datenbank und der Netzwerkbeschaffenheit ab.
Immer aktuell mit der Live-Verbindung
Durch die direkte Verbindung mit Ihrer Datenquelle visualisieren Sie immer die aktuellsten Daten, die Ihnen die Datenbank zur Verfügung stellt. Wenn Ihre Datenbank in Echtzeit aktualisiert wird, müssen Sie die Tableau-Visualisierung nur über die Funktionstaste F5 aktualisieren oder indem Sie mit der rechten Maustaste auf die Datenquelle klicken und die Option Aktualisieren auswählen.
Wenn Sie eine Verbindung zu großen Datenmengen herstellen, die Visualisierung sehr viele Details enthält oder Ihre Daten in einer leistungsstarken Datenbank mit entsprechend ausgestatteter Hardware gespeichert sind, können Sie mit einer direkten Verbindung eine schnellere Antwortzeit erzielen.
Die Auswahl einer direkten Verbindung schließt nicht die Möglichkeit aus, die Daten später zu extrahieren. Andersherum können Sie auch wieder von einem Extrakt zu einer Live-Verbindung wechseln, indem Sie mit der rechten Maustaste auf die Datenquelle klicken und die Option Extrakt verwenden deaktivieren.
Unabhängig mit einem Datenextrakt
Datenextrakte haben naturgemäß nicht den Vorteil, dass sie in Echtzeit aktualisiert werden, wie es bei einer Live-Verbindung der Fall ist. Die Verwendung der Data Engine von Tableau bietet jedoch eine Reihe von Vorteilen:
Leistungsverbesserung bei langsamen Datenquellen:
Vielleicht ist Ihre Datenbank stark mit Anfragen belastet oder bereits mit transaktionalen Operationen beschäftigt. Mithilfe der Data Engine können Sie Ihre Datenbank entlasten und die Datenhaltung von Tableau übernehmen lassen. Extrakte können Sie am besten außerhalb der Stoßzeiten aktualisieren. Tableau Server kann Extrakte auch zu festgelegten Zeitpunkten aktualisieren, zum Beispiel nachts um 3 Uhr.
Inkrementelles Extrahieren:
Durch das inkrementelle Extrahieren wird auch die Aktualisierungszeit beschleunigt, da Tableau nicht die gesamte Extraktdatei aktualisiert. Es fügt nur neue Datensätze hinzu. Um inkrementelle Extrakte auszuführen, müssen Sie ein Feld angeben, das als Index verwendet werden soll. Tableau aktualisiert die Zeile nur, wenn sich der Index geändert hat. Daher müssen Sie beachten, dass Änderungen an einer Datenzeile, die das Indexfeld nicht ändert, von der Aktualisierung nicht berücksichtigt werden.
Datenmenge mit Filtern einschränken:
Eine andere Möglichkeit, Extrakte zu beschleunigen, besteht darin, beim Extrahieren der Daten Filter anzuwenden. Wenn für die Analyse nicht die gesamte Datenmenge benötigt wird, können Sie den Extrakt so filtern, dass er nur die erforderlichen Datensätze enthält. Wenn Sie eine sehr große Datenmenge haben, müssen Sie nur selten den gesamten Inhalt der Datenbank extrahieren. Zum Beispiel kann Ihre Datenbank Daten für viele Regionen enthalten, aber Sie benötigen möglicherweise nur die Daten zur Region »Süd«.
Um einen Extrakt entsprechend anzulegen, wählen Sie als Verbindung Extrakt aus und klicken dann auf das nebenstehende Bearbeiten. Es öffnet sich das Fenster Daten extrahieren. Mit einem weiteren Klick auf Hinzufügen können Sie nun einen Filter erstellen, der für Ihren Extrakt angewandt wird (siehe Abbildung 1.2).
Weitere Funktionen für bestimmte Datenquellen:
Wenn Ihre Daten aus einer bestimmten Datenquelle stammen, so sind unter anderem Aggregationsfunktion wie Median (beispielsweise bei Access-Datenbanken ) bei einer Live-Verbindung nicht verfügbar. Arbeiten Sie mit einem Extrakt, können Sie diese Funktionen nutzen, auch wenn sie von der ursprünglichen Datenquelle nicht unterstützt werden.
Datenübertragbarkeit:
Sie können Extrakte lokal speichern und auch dann verwenden, wenn die Verbindung zu Ihrer Datenquelle nicht verfügbar ist. Eine Live-Verbindung funktioniert nicht, wenn Sie nicht über ein lokales Netzwerk oder das Internet auf Ihre Datenquelle zugreifen können. Extrakte werden außerdem komprimiert und sind normalerweise wesentlich kleiner als die ursprünglichen Datenbanktabellen, was dem Weitertransport der Daten zugutekommt.
Achten Sie auf Datenschutz und Data Governance
In Unternehmen spielen Datenschutz und Data Governance und damit verbunden Integrität und Sicherheit der Daten eine wichtige Rolle. Wenn Sie Extrakte an Mitarbeiter oder Geschäftspartner verteilen, sollten Sie die etwaige Vertraulichkeit Ihrer Daten berücksichtigen. Ziehen Sie in Betracht, den Inhalt des Extrakts über Filter einzuschränken und zu sichtbaren Dimensionen zu aggregieren.
Sind Sie sich unsicher, arbeiten Sie im Zweifelsfall besser mit einer Live-Verbindung, da in diesem Fall Ihre Datenbank das Rechte-Management steuert und so Ihre Daten nicht von Personen ohne ausreichende Berechtigungen gesehen werden können.
Das erste deutschsprachige Buch zur Datenvisualisierung mit Tableau hat seinen Weg in die Buchhandlungen gefunden und steht nun allen Interessierten zur Verfügung. Ob Sie ein Anfänger oder ein erfahrener Experte in der Welt der Datenvisualisierung sind, dieses Buch bietet Ihnen wertvolle Einblicke und praxisorientierte Anleitungen.
Das erste deutschsprachige Tableau-Buch, Datenvisualisierung mit Tableau, ist ab sofort im Handel erhältlich bei:
Amazon (als gedrucktes Buch und als Kindle Edition)
Vorschau
Mehr erfahren zu Datenvisualisierung mit Tableau
Erfahren Sie mehr zu Datenvisualisierung mit Tableau auf der Webseite zum Tableau-Buch! Entdecken Sie die Themen, die das Buch abdeckt, und sehen Sie sich Rezensionen von anderen Lesern an. Dieses Buch wird Ihr Verständnis für Datenvisualisierung mit Tableau auf ein neues Level heben.
Update 11 Aug 2018: In den Informatikbücher-Top-20 bei Amazon! Update 17 Aug 2018: In den Informatikbücher-Top-10 bei Amazon!
Bevor ich nun selbst viel zum Buch schreibe, gebe ich einfach mal einen Auszug aus dem Umschlagtext wieder:
Visualisieren Sie Ihre Daten schnell und ausdrucksstark mit Tableau, um praktisch umsetzbare Ergebnisse zu erhalten. Alexander Loth zeigt Ihnen Schritt für Schritt, wie Sie ganz einfach visuelle Analysen erstellen und so selbst komplexe Datenstrukturen verstehen sowie gewonnene Erkenntnisse effektiv kommunizieren können.
Das Buch richtet sich an:
Menschen, die Zugang zu Daten haben und diese verstehen möchten
Führungskräfte, die Entscheidungen auf Grundlage von Daten treffen
Analysten und Entwickler, die Visualisierungen und Dashboards erstellen
angehende Data Scientists
Zum Verständnis dieses Buches sind weder besondere mathematische Fähigkeiten noch Programmiererfahrung nötig. Es eignet sich daher auch für Einsteiger und Anwender, die sich dem Thema Datenvisualisierung und -analyse praxisbezogen und ohne ausschweifende theoretische Abhandlungen, nähern möchten.
Die grundlegenden Funktionen von Tableau werden Schritt für Schritt erläutert und Sie lernen, welche Visualisierungsmöglichkeiten wann sinnvoll sind. Der Autor zeigt Fallbeispiele auf, die weit über eine »Standard-Analyse« hinausreichen und geht auf Funktionen ein, die selbst erfahrenen Nutzern oft nicht hinlänglich bekannt sind. Sie erhalten außerdem Hinweise und Tipps, die das Arbeiten mit Tableau erleichtern, und können so zukünftig Ihre eigenen Daten bestmöglich visualisieren und analysieren.
We use cookies to optimize our website and our service.
Functional
Immer aktiv
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.