Brave. Proud to support a faster, safer web.

#TC18 Sessions: Rock your Social Media Data with Tableau

My TC18 sessions in New Orleans: "Rock your Social Media Data with Tableau"
My TC18 sessions in New Orleans: “Rock your Social Media Data with Tableau”

Anyone can analyze basic social media data in a few steps. But once you’ve started diving into social analytics, how do you bring it to the next level? This session will cover strategies for scaling a social data program. You’ll learn skills such as how to directly connect to your social media data with a Web Data Connector, considerations for building scalable data sources, and tips for using metadata and calculations for more sophisticated analysis.

First session: Tues, 23 Oct,  12:30-1:30 (Location: MCCNO – L3 – 333)

Second session: Wed, 24 Oct, 10:15-11:15 (Location: MCCNO – L3 – 346)

Twitter Analysis #TC18 Dashboard featured as Tableau Public Viz of the Day
Twitter Analysis #TC18 Dashboard featured as Tableau Public Viz of the Day

Here are some key takeaways and links (i.e. additional resources) featured during my TC18 sessions to help you formulate your social media data program in order to build a stronger presence and retrieve powerful insights:

Prolog: Introducing data artist Noah

Step 1: Understand How to Succeed with Social Media

Apple has officially joined Instagram on 7th August 2017. This isn’t your average corporate account as the company doesn’t want to showcase its own products. Instead, Apple is going to share photos shot with an iPhone:

The Customer-Centric Data Strategy

Apple’s Instagram account is more an extension of the “Shot on iPhone” billboard ad campaign.

And there are plenty takeaways for every business:

  • Wrap your data around your customers, in order to create business value
  • Interact with your customer in a natural way
  • Understand your customer and customer behaviour better by analyzing social media data

Step 2: Define Your Social Objectives and KPIs

A previous record-holding tweet: In 2014, actor and talk show host Ellen DeGeneres took a selfie with a gaggle of celebrities while hosting the Oscars. That photo has 3.44 million retweets at the time of writing:

Social Objectives:

  • Define specific KPIs for social media platforms
  • KPI objectives need to be measurable
  • Metrics should be in line with the business goals

Step 3: Assemble Your KPIs

Brand Awareness and Reputation

Step 4: Connect Your Social Media with Tableau

Option 1 – Directly from the platform: Get data directly from Facebook, Twitter, YouTube, and more

Option 2 – Via web automation: Use a service like IFTTT to store data on Google Sheets

Option 3 – Via web data connector: Use Tableau’s web data connector, e.g. the Twitter Web Data Connector by Alex Ross (a.k.a. Tableau Junkie) -> http://bit.ly/tc18_twitter

Option 4 – Code your own solution: Use an API provided by the platform -> http://bit.ly/tc17_r_fetch

Option 5 – Via a third party platform: Get data from an integrated social media platform, such as Talkwalker -> http://bit.ly/tc17_talkwalker

Talkwalker - Via a Third Party Platform

Step 5: Apply some Tips to Level Up

Gather Historic Data

Step 6: Explore Social Media Listening

Social listening means that you look beyond your own content. E.g. Talkwalker offers AI for image recognition and ggregation for online/offline media: http://bit.ly/tc17_talkwalker

Step 7: Leverage Your Analytics Tool Chain

Use Your R and Python Skills

Demo/Tutorial: Let’s See this in Tableau!

How to analyse Social Media traffic with Google Analytics in Tableau (YouTube):

How to analyse Social Media data from Twitter in Tableau (YouTube):

Slide Set

The slides presented at Tableau Conference are also available on SlideShare.

Are you on Social Media?

Feel free to retweet/share:

[Update 25 Oct 2018]: Missed the sessions? Watch the recording online!

Social Media and the Customer-centric Data Strategy #data17 #resources

Social media marketing mix
Do you analyze your social media marketing mix? | Photo Credit: via Richard Goodwin

With over 3 billion active social media users, establishing an active presence on social media networks is becoming increasingly essential in getting your business front of your ideal audience. These days, more and more consumers are looking to engage, connect and communicate with their favorite brands on social media.

Adding social media to your customer-centric data strategy will help boost brand awareness, increase followership, drive traffic to your website and generate leads for your sales funnel. In 2017, no organization should be without a plan that actively places their brand on social media, and analyzes their social media data.

Once you’ve started diving into social media analytics, how do you bring it to the next level? This session covers a customer-centric data strategy for scaling a social media data program.

Here are the links (i.e. additional resources) featured during the session to help you formulate your social media data program in order to build a stronger presence and retrieve powerful insights:

The Data Opportunity

TC17 Social Media Slides: The Data Opportunity

Focus on relevant metrics for your strategy

TC17 Social Media Slides: Sentiment Analysis

How to get Social Media in Tableau?

TC17 Social Media Slides: 3rd Party Platform Talkwalker

Tips to Level Up

TC17 Social Media Slides: Unshorten URLs in Tableau with R

Tutorials and Slide Set

The slides and tutorials presented at Tableau Conference on Tour in Berlin are also available on SlideShare, and on YouTube in English and German.

English Tutorials

German Tutorials

Slide Set

It’s My 10 Year Blogging Anniversary!

Photo from an early blog post: 2007 Hampi, a temple town in South India recognised as UNESCO World Heritage Site
Photo from an early blog post: 2007 Hampi, a temple town in South India recognized as UNESCO World Heritage Site (Flickr)

Woohoo, it’s already ten years since I started this blog. Can’t believe it! Thanks to all of those who read my posts, and who encouraged and inspired me. Without you blogging would be only half the fun! Now, let’s have a little recap…

2007-2009 SAP and India:

It all started in 2007. I was studying Computer Science, and decided to go for an internship abroad. China and India were on my short list. I decided for India, applied for a scholarship and asked some companies for interesting project work. Before starting the adventure, I published my very first blog post to keep family and friends in loop.

For the next seven month, I lived in Bangalore, and worked for SAP Labs India to develop prototypes for mobile BI apps. I spent plenty of weekends to explore India and surrounding countries. After returning from India, I continued to work for SAP at their headquarters while finishing my degree in Karlsruhe.

2009-2012 CERN:

CERN, surrounded by snow-capped mountains and Lake Geneva, grabbed my attention during the end of my studies. CERN has tons of data: some petabytes! Challange accepted. CERN is known for its particle accelerator Large Hadron Collider (LHC). We applied machine learning to identify new correlations between variables (LHC data and external data) that were not previously connected.

2012-2015 Capgemini and MBA:

Back in Germany, I wanted to bring Big Data Analytics to companies. To one company? No, to many companies! So instead of getting hired as Head of BI for an SME, I started to work for Capgemini. I had fantastic projects, designed data-driven usecases for the financial sector, and gave advice for digital transformation inititives.

In order to keep in balance with all the project work, I dedicated many of my weekend for studies and got enrolled in Frankfurt School’s Executive MBA programme. During my studies, I focused on Emerging Markets and visited a module at CEIBS in Shanghai.

2015-201? Tableau and Futura:

I knew Tableau from my time as consultant. It is an awesome company with a great product and a mission: help people see and understand their data. That’s me! I joined Tableau to help organizations through the transition from classic BI factories to modern self-service analytics by developing data strategies, so that data can be treated as a corporate asset. This includes education, evangelism and establishing a data-driven culture.

In the evenings I’m working for Futura Analytics, a fintech startup, which I co-founded in 2017. Futura Analytics offers real-time information discovery, and transforms data from social media and other public sources into actionable signals.

What’s next?

Currently I’m looking forward to give my Data Strategy talk on TC17 accompanied by a TensorFlow demo scenario. I’m also learning Mandarin, the predominant language of business, politics, and media in China and Taiwan, for quite a while. Let’s see if that is going to influence my next steps… 🙂

How to unleash Data Science with an MBA?

Servers record a copy of LHC data and distribute it around the world for Analytics

My Data Science journey starts at CERN where I finished my master thesis in 2009. CERN, the European Organization for Nuclear Research, is the home of the Large Hadron Collider (LHC) and has some questions to answer: like how the universe works and what is it made of. CERN collects nearly unbelievable amounts of data – 35 petabytes of data per year that needs analysis. After submitted my thesis, I continued my Data Science research at CERN.

I began to wonder: Which insights are to be discovered beyond Particle Physics? How can traditional companies benefit from Data Science? After almost four exciting years at CERN with plenty of Hadoop and Map/Reduce, I decided to join Capgemini to develop business in Big Data Analysics, and to boost their engagements in Business Intelligence. In order to leverage my data-driven background I enrolled for the Executive MBA program at Frankfurt School of Finance & Management including an Emerging Markets module at CEIBS in Shanghai.

Today companies have realized that Business Analytics needs to be an essential part of their competitive strategy. The demand on Data Scientists grows exponentially. To me, Data Science is more about the right questions being asked than the actual data. The MBA enabled me to understand that data does not provide insights unless appropriately questioned. Delivering excellent Big Data projects requires a full understanding of the business, developing the questions, distilling the adequate amount of data to answer those questions and communicating the proposed solution to the target audience.

“The task of leaders is to simplify. You should be able to explain where you have to go in two minutes.” – Jeroen van der Veer, former CEO of Royal Dutch Shell

Goodbye Academia, Hello Capgemini

CERN Main Auditorium
CERN Main Auditorium

I have enjoyed research for the last four years. Yet, I have decided to resigned from my postgraduate position at CERN, and to move to Capgemini. I will continue on the areas I love: Data and Analytics!

Capgemini is one of the world’s largest consulting corporations. Like many other consulting company, Capgemini does not yet have a dedicated team to offer effective strategies and solutions employing Big Data, Analytics and Machine Learning.

I love these technologies, and I am very confident that I will elaborate a business development plan to drive business growth, through customer and market definition, including new services such as:

  • Data Science Strategy (enable organizations to solve business problems increasingly with insights from analytics)
  • Consulting (answering questions using data)
  • Development (building custom data-related tools like interactive dashboards, pipelines, customized Hadoop setup, data prep scripts…)
  • Training (across a variety of skill levels; from basic dashboard design to deep dive in R, Python and D3.js)

This plan is also accompanied by a go-to-market strategy, which I don’t want to unveil on my blog. Maybe retrospective in some years, so stay tuned…