10 Use Cases for AI in Healthcare as part of your Digital Strategy

AI has to potential to save millions of lives by applying complex algorithms | Photo Credit: via Brother UK

Good health is a fundamental need for all of us. Hence, it’s no surprise that the total market size of healthcare is huge. Developed countries typically spend between 9% and 14% of their total GDP on healthcare.

The digital transformation in the healthcare sector is still in its early stages. A prominent example is the Electronic Health Record (EHR) in particular, and, in general poor quality of data. Other obstacles include data privacy concerns, risk of bias, lack of transparency, as well as legal and regulatory risks. Although all these matters have to be addressed in a Digital Strategy, the implementation of Artificial Intelligence (AI) should not hesitate!

AI has to potential to save millions of lives by applying complex algorithms to emulate human cognition in the analysis of complicated medical data. AI furthermore simplifies the lives of patients, doctors, and hospital administrators by performing or supporting tasks that are typically done by humans, but more efficiently, more quickly and at a fraction of the cost. The applications for AI in healthcare are wide-ranging. Whether it’s being used to discover links between genetic codes, to power surgical robots or even to maximize hospital efficiency, AI is reinventing modern healthcare through machines that can predict, comprehend, learn and act.

Let’s have a look at ten of the most straightforward use cases for AI in healthcare that should be considered for any Digital Strategy:

1. Predictive Care Guidance:

AI can mine demographic, geographic, laboratory and doctor visits, and historic claims data to predict an individual patient’s likelihood of developing a condition. Using this data predictive models can suggest the best possible treatment regimens and success rate of certain procedures.

2. Medical Image Intelligence:

AI brings in advanced insights into the medical imagery specifically the radiological images. Using AI providers can gain insights and conduct automatic, quantitative analysis such as identification of tumors, fast radiotherapy planning, precise surgery planning, and navigation, etc.

3. Behavior Analytics:

AI helps to solve patient registry mapping issues for and help the Human Genome Project map complicated genomic sequences to identify the link to diseases like Alzheimer’s.

4. Virtual Nursing Assistants:

Conversational-AI-powered nurse assistants can provide support patients and deliver answers with a 24/7 availability. Mobile apps keep the patients and healthcare providers connected between visits. Such AI-powered apps are also able to detect certain patterns and alert a doctor or medical staff.

5. Research and Innovation:

AI helps to identify patterns in treatments such as what treatments are better suited and efficient for certain patient demography, and this can be used to develop innovative care techniques. Deep Learning can be used to classify large amounts of research data that is available in the community at large and develop meaningful reports that can be easily consumed.

6. Population Health:

AI helps to learn why and when something happened, and then predict when it will happen again. Machine Learning (ML) applied to large data sets will help healthcare organizations find trends in their patients and populations to see adverse events such as heart attacks coming.

7. Readmissions Management:

By analyzing the historical data and the treatment data, AI models can predict, flag the causes of readmissions, patterns, etc. This can be used to reduce the hospital readmission rates and for better regulatory compliance by developing mitigating strategies for the identified causes.

8. Staffing Management:

Predictive models can be developed by analyzing various factors such as historical demand, seasonality, weather conditions, disease outbreak, etc. to forecast the demand for health care services at any given point of time. This would enable better staff management and resource planning.

9. Claims Management:

AI detects any aberrations such as – duplicate claims, policy exceptions, fictitious claims or fraud. Machine learning algorithms recognize patterns in data looking at trends, non-conformance to Benford’s law, etc. to flag suspicious claims.

10. Cost Management:

AI automates the cost management through RPA, cognitive services, which will help in faster cost adjudication. It will also enable analysis, optimization, and detection by identifying patterns in cost and flagging any anomalies.

Conclusion:

As these examples show, the wide range of possible AI use cases can improve healthcare quality and healthcare access while addressing the massive cost pressure in the healthcare sector. Strategic sequencing of use cases is mandatory to avoid implementation bottlenecks due to the scarcity of specialized talent.

Which use cases for AI in healthcare would you add to this list?

Share your favorite AI use case in the blog post comments or reply to this tweet:

This post is also published on LinkedIn.

Recap of the 15th Data & AI Meetup: Reinforcement Learning; TensorFlow on Azure; Visual Analytics

200 attendees at the 15th Data & AI Meetup at DB Systel in Frankfurt, Germany
200 attendees at the 15th Data & AI Meetup at DB Systel in Frankfurt, Germany

Yesterday we had an amazing Data & AI Meetup in Frankfurt! Let’s have a quick recap!

The venue: DB Systel’s Silberturm

DB Systel kindly hosted the 15th iteration of our Data & AI Meetup on the 30th floor of the Silberturm in Frankfurt, Germany.

Welcome & Intro

Darren Cooper and I had the pleasure to welcome 200 Data & AI enthusiasts! Furthermore, we were happy to announce that our Data & AI Meetup group has 1,070 members and our brand new Data & AI LinkedIn group already has 580 members.

Reinforcement Learning of Train Dispatching at Deutsche Bahn

Dr. Tobias Keller, Data Scientist at DB Systel, showed in his session how Deutsche Bahn aims at increasing the speed of the suburban railway system in Stuttgart (S-Bahn) using Artificial Intelligence. In particular, a simulation-based reinforcement learning approach provides promising first results.

TensorFlow & Co as a Service

Sascha Dittmann, Cloud Solution Architect for Advanced Analytics & AI at Microsoft, showed in his presentation, how TensorFlow and other ML frameworks can be used better in a team through appropriate Microsoft Cloud services. He presented different ways of how data science experiments can be documented and shared in a team. He also covered topics such as versioning of the ML models, as well as the operationalization of the models in production.

Visual Analytics: from messy data to insightful visualization

Daniel Weikert, Expert Consultant at SIEGER Consulting, showed in his session the ease of use of Microsoft Power BI Desktop. He briefly highlighted the AI Capabilities which Power BI provides and showed a way on how to get started with messy data, doing data cleaning and visualize results in an appealing way to your audience.

Speaking at an upcoming Data & AI meetup?

If you’ve dreamed of sharing your Data & AI story with many like-minded Data & AI enthusiasts, please submit your session proposal or reply to the recap tweet:

15th Data & AI Meetup: Reinforcement Learning; TensorFlow on Azure; Visual Analytics

We’d like to invite you to our 15th Data & AI Meetup, hosted at Skydeck @ DB Systel in Frankfurt, Germany.

Agenda:

5:30pm: Doors open

6:00pm: Welcome & Intro
by Alexander Loth, Digital Strategist at Microsoft
and Darren Cooper, Principal Consultant at DB Systel

6:20pm: 🚄 Reinforcement Learning of Train Dispatching at Deutsche Bahn
by Dr. Tobias Keller, Data Scientist at DB Systel

7:00pm: 🚀 TensorFlow & Co as a Service
by Sascha Dittmann, Cloud Solution Architect for Advanced Analytics & AI at Microsoft

7:40pm: 📊 Visual Analytics: from messy data to insightful visualization
by Daniel Weikert, Expert Consultant at SIEGER Consulting

8:30pm: Networking & drinks

9:30pm: Event concludes

DB Systel Skydeck in Frankfurt (previous meetup)
DB Systel Skydeck in Frankfurt (previous meetup)

Sign up on Meetup and join us on Twitter @DataAIHub and LinkedIn!

Do you want to speak at our events? Submit your proposal here: https://aka.ms/speakAI

My First Day at Microsoft: A New Journey Begins

Alexander Loth on his first day at Microsoft
Alexander Loth on his first day at Microsoft

Joining Microsoft marks an exciting new chapter in my professional journey. With memories of my farewell to Tableau still fresh, I arrived at the Microsoft office, ready to embrace the challenges and opportunities that lie ahead. Read about my farewell to Tableau here.

Walking through the doors of Microsoft’s sprawling campus, the spirit of creativity and technological advancement was palpable. The legacy of innovation that defines Microsoft was evident everywhere I looked. I was immediately struck by the energy and innovation that permeated the air. From the architecture to the people, everything spoke of a commitment to excellence.

My first day was filled with introductions to my talented new colleagues. Their passion and expertise left me inspired and eager to contribute. With previous experiences at Tableau, CERN, and other industry leaders, I am well-prepared for this new adventure. Each step has shaped me, and I’m confident that this new adventure at Microsoft will add valuable layers to my career.

I’m thrilled to be part of Microsoft’s vision to empower every person and organization on the planet to achieve more. The future promises exciting projects, innovation, and growth.

My day 1 at Microsoft has been a remarkable experience, setting the stage for a fruitful journey. I can’t wait to see what tomorrow brings!

Stay connected with me on Twitter and LinkedIn to follow my journey at Microsoft.

Thank you Tableau and farewell!

Farewell to Tableau: A Reflective Goodbye - Alexander Loth with Tableau Data Rockstar t-shirt
Farewell to Tableau: A Reflective Goodbye – Alexander Loth

10 years ago, I started using Tableau.

4 years ago, I started working at Tableau.

Today is my last day with Tableau.

As I pen down my farewell to Tableau, it’s hard not to look back at the incredible journey that began 10 years ago. I reflect on a decade-long connection that began with using Tableau and culminated in four amazing years as an employee. This journey has shaped my career, leaving me filled with gratitude. Read about my 10-year blogging anniversary here.

These last four years have been the most inspiring of my career, what a ride it has been! It’s been a great opportunity and an amazing experience, joining this unique Seattle start-up as one of the first employees in Tableau’s Frankfurt office. Watching our DACH team grow to 120+ people is far more than I had imagined at the beginning, it is simply amazing!

As for my next phase, I’ll take on a strategist role at a leading cloud & AI company. I am excited to continue creating an impact in the digital age.

I’m very grateful to have worked alongside talented people both in Tableau and in our greater #datafam community — people who are brilliant and freakishly friendly. I am immensely grateful for the guidance of my mentors, Nate Vogel and Andy Cotgreave. Their wisdom and support have been instrumental in my growth at Tableau. I have many lifetime memories and made lots of great friends. I wish all of you at Tableau all the best for your next chapter, joining the Salesforce Ohana.

This farewell to Tableau is filled with gratitude, memories, and excitement for the future. Thank you, Tableau, for the incredible ride. So long, and thank you for everything!

— Alex

Watch my 4-years-in-2-minutes clip here:

Follow me on Twitter and LinkedIn for updates on my farewell to Tableau and new ventures.