Das erste deutschsprachige Buch zur Datenvisualisierung mit Tableau hat seinen Weg in die Buchhandlungen gefunden und steht nun allen Interessierten zur Verfügung. Ob Sie ein Anfänger oder ein erfahrener Experte in der Welt der Datenvisualisierung sind, dieses Buch bietet Ihnen wertvolle Einblicke und praxisorientierte Anleitungen.
Das erste deutschsprachige Tableau-Buch, Datenvisualisierung mit Tableau, ist ab sofort im Handel erhältlich bei:
Amazon (als gedrucktes Buch und als Kindle Edition)
Vorschau
Mehr erfahren zu Datenvisualisierung mit Tableau
Erfahren Sie mehr zu Datenvisualisierung mit Tableau auf der Webseite zum Tableau-Buch! Entdecken Sie die Themen, die das Buch abdeckt, und sehen Sie sich Rezensionen von anderen Lesern an. Dieses Buch wird Ihr Verständnis für Datenvisualisierung mit Tableau auf ein neues Level heben.
Update 11 Aug 2018: In den Informatikbücher-Top-20 bei Amazon! Update 17 Aug 2018: In den Informatikbücher-Top-10 bei Amazon!
Bevor ich nun selbst viel zum Buch schreibe, gebe ich einfach mal einen Auszug aus dem Umschlagtext wieder:
Visualisieren Sie Ihre Daten schnell und ausdrucksstark mit Tableau, um praktisch umsetzbare Ergebnisse zu erhalten. Alexander Loth zeigt Ihnen Schritt für Schritt, wie Sie ganz einfach visuelle Analysen erstellen und so selbst komplexe Datenstrukturen verstehen sowie gewonnene Erkenntnisse effektiv kommunizieren können.
Das Buch richtet sich an:
Menschen, die Zugang zu Daten haben und diese verstehen möchten
Führungskräfte, die Entscheidungen auf Grundlage von Daten treffen
Analysten und Entwickler, die Visualisierungen und Dashboards erstellen
angehende Data Scientists
Zum Verständnis dieses Buches sind weder besondere mathematische Fähigkeiten noch Programmiererfahrung nötig. Es eignet sich daher auch für Einsteiger und Anwender, die sich dem Thema Datenvisualisierung und -analyse praxisbezogen und ohne ausschweifende theoretische Abhandlungen, nähern möchten.
Die grundlegenden Funktionen von Tableau werden Schritt für Schritt erläutert und Sie lernen, welche Visualisierungsmöglichkeiten wann sinnvoll sind. Der Autor zeigt Fallbeispiele auf, die weit über eine »Standard-Analyse« hinausreichen und geht auf Funktionen ein, die selbst erfahrenen Nutzern oft nicht hinlänglich bekannt sind. Sie erhalten außerdem Hinweise und Tipps, die das Arbeiten mit Tableau erleichtern, und können so zukünftig Ihre eigenen Daten bestmöglich visualisieren und analysieren.
Are you ready for Tableau Conference 2018? Don’t miss my Social Media Analytics sessions!
Why do we need Social Media Analytics?
Social Media Analytics transforms raw data from social media platforms into insight, which in turn leads to new business value.
What will your learn in this sessions?
Once you dive into Social Media Analytics, how do you bring it to the next level? Social data can offer powerful insights right away. In this session, you will learn how to build a mature social data program from that foundation and strategies for scaling a social data programme, as well as how to connect directly to your social media data with a web data connector; considerations for building scalable data sources; and tips for using metadata and calculations for more sophisticated analysis.
Where and when are the sessions?
Do you want to learn more about Social Media Analytics with Tableau? Meet me at the 2018 Tableau Conferences in London or New Orleans and join my sessions:
Michael, a data scientist, who is working for a German railway and logistics company, recently told me during a FATUG Meetup that he loves Tableau’s R integration and Tableau’s Python integration. As he continued, he raised the question of using functions they have written in Julia. Julia, a high-level dynamic programming language for high-performance numerical analysis, is an integral part of the newly developed data strategy in Michael’s organization.
Tableau, however, does not come with native support for Julia. I didn’t want to keep Michael’s team down and was looking for an alternative way to integrate Julia with Tableau.
This solution is working flawlessly in a production environment for several months. In this tutorial, I’m going to walk you through the installation and connecting Tableau with R and Julia. I will also give you an example of calling a Julia statement from Tableau to calculate the sphere volume.
XRJulia provides an interface from R to Julia. RServe is a TCP/IP server that allows Tableau to use facilities of R.
3. Load libraries and start RServe
After packages are successfully installed, we load them and run RServe:
> library(XRJulia) > library(Rserve) > Rserve()
Make sure to repeat this step every time you restart your R session.
4. Connecting Tableau to RServe
Now let’s open the Help menu in Tableau Desktop and choose Settings and Performance >Manage External Service connection to open the External Service Connection dialog box:
Enter a server name using a domain or an IP address and specify a port. Port 6311 is the default port used by Rserve. Take a look at my R tutorial to learn more about Tableau’s R integration.
5. Adding Julia code to a Calculated Field
You can invoke Calculated Field functions called SCRIPT_STR, SCRIPT_REAL, SCRIPT_BOOL, and SCRIPT_INT to embed your Julia code in Tableau, such as this simple snippet that calculates sphere volume:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
You can now use your Julia calculation as an alternate Calculated Field in your Tableau worksheet:
Feel free to download the Tableau Packaged Workbook (twbx) here.
Further Reading: Mastering Julia
If you want to go beyond this tutorial and explore more about Julia in the context of data science, I recommend the book Mastering Julia. You can find it here.
Further Reading: Visual Analytics with Tableau
Join the data science conversation and follow me on Twitter and LinkedIn for more tips, tricks, and tutorials on Julia in Tableau and other data analytics topics. If you’re looking to master Tableau, don’t forget to preorder your copy of my upcoming book, Visual Analytics with Tableau. (Amazon). It offers an in-depth exploration of data visualization techniques and best practices.
With over 3 billion active social media users, establishing an active presence on social media networks is becoming increasingly essential in getting your business front of your ideal audience. These days, more and more consumers are looking to engage, connect and communicate with their favorite brands on social media.
Adding social media to your customer-centric data strategy will help boost brand awareness, increase followership, drive traffic to your website and generate leads for your sales funnel. In 2017, no organization should be without a plan that actively places their brand on social media, and analyzes their social media data.
Once you’ve started diving into social media analytics, how do you bring it to the next level? This session covers a customer-centric data strategy for scaling a social media data program.
Here are the links (i.e. additional resources) featured during the session to help you formulate your social media data program in order to build a stronger presence and retrieve powerful insights:
We use cookies to optimize our website and our service.
Functional
Immer aktiv
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.