Nachdem ich bereits Erfahrung als Buchautor (hier und hier) gesammelt habe, hatte ich kürzlich die Gelegenheit als Technical Reviewer ein sehr spannendes Buchprojekt zu unterstützen. Das Buch Machine Learning kompakt: Alles, was Sie wissen müssen, geschrieben von Andriy Burkov, fand ich dabei dermaßen interessant, dass ich es gerne im Folgenden kurz vorstellen werde:
Machine Learning kompakt von Andriy Burkov ist ein hervorragend geschriebenes Buch und ein Muss für jeden, der sich für Machine Learning interessiert.
Andriy Burkov gelang ein ausgewogenes Verhältnis zwischen der Mathematik, intuitiven Darstellungen und verständlichen Erklärungen zu finden. Dieses Buch wird Neulingen auf dem Gebiet als gründliche Einführung zu Machine Learning zugutekommen. Darüber hinaus dient das Buch Entwicklern als perfekte Ergänzung zu Code-intensiver Literatur, da hier die zugrunde liegenden Konzepte beleuchtet werden.
Machine Learning kompakt eignet sich außerdem als Lehrbuch für einen allgemeinen Kurs zu Machine Learning. Ich wünschte, ein solches Buch gäbe es, als ich studiert habe!
Protip: viele der im Buch vorgestellten Machine-Learning-Algorithmen können Sie einfach und bequem in Microsoft Azure Machine Learning Studio selbst ausprobieren: https://aka.ms/mlst
China’s AI revolution is taking the world by storm. In this journey across cities like Hangzhou, discover how China is leading the AI industry, inspiring innovation, and shaping the future.
Currently, I’m on a 4-week China trip, visiting many cities. In Hangzhou, I met CEIBS peers who work for Alibaba. While the Alibaba campus is quite impressive, I got even more impressed by Alibaba’s leadership culture, which is encouraging its employees to innovate as intrapreneurs.
Intrapreneurship at Alibaba: The China AI Model for Success
At the impressive Alibaba Campus in Hangzhou, I discovered the power of intrapreneurship. If you start your own project (a new mobile app, a patent, a scientific paper, etc.), you’re doing it at your own pace. Employees are encouraged to innovate at their own pace, without being micro-managed. Success is rewarded with bonuses. Truly, this is where we can learn from China in the „China AI“ landscape!
China’s AI Ambitions: Leading the New World Order
While traveling in China I was reading AI Superpowers: China Silicon Valley, and the New World Order by Kai-Fu Lee, a book that is a must-read to get an idea of where China’s AI ambitions are heading to. What matters most for AI innovation these days, the author argues, is access to vast quantities of data—where China’s advantage is overwhelming.
Visualizing the Journey: Exploring my Tableau Public Viz
Which other cities in China did I visit? Check out my Tableau Public viz:
Interested in Visual Analytics? Grab a copy of my latest book, Visual Analytics with Tableau (Amazon), for a comprehensive guide to mastering data visualization.
Stay Connected and Explore More on China AI
China’s AI is reshaping the global landscape. From Alibaba to the nation’s strategies, China AI inspires and challenges the world. It’s a blend of technology, culture, and energy driving China’s AI revolution.
The experiences and insights from this trip have been truly enlightening. I invite you to join me as I continue to explore the fascinating world of China AI, digital transformation, and visual analytics. Follow me on Twitter and LinkedIn, and let’s continue learning together.
Sind Sie mit der Geschwindigkeit Ihrer Datenanlyse unzufrieden? Oder haben Ihre Dashboards lange Ladezeiten? Dann können Sie bzw. Ihr Datenbank-Administrator folgenden Hinweisen nachgehen, die sich je nach Datenquelle unterscheiden können.
Allgemeine Empfehlungen zur Performance-Optimierung
Möchten Sie die Geschwindigkeit der Analyse verbessern? Dann beachten Sie folgende Punkte:
Benutzen Sie mehrere »kleinere« Datenquellen für individuelle Fragestellungen anstatt einer einzigen Datenquelle, die alle Fragestellungen abdecken soll.
Verzichten Sie auf nicht notwendige Verknüpfungen.
Aktivieren Sie in Tableau die Option »Referentielle Integrität voraussetzen« im »Daten«-Menü (siehe Abbildung 2.20). Wenn Sie diese Option verwenden, schließt Tableau die verknüpften Tabellen nur dann in die Datenabfrage ein, wenn sie explizit in der Ansicht verwendet wird*. Wenn Ihre Daten nicht über referentielle Integrität verfügen, sind die Abfrageergebnisse möglicherweise ungenau.
* So wird beispielsweise der Umsatz anstatt mit der SQL-Abfrage SELECT SUM([Sales Amount]) FROM [Sales] S INNER JOIN [Product Catalog] P ON S.ProductID = P.ProductID lediglich mit der SQL-Abfrage SELECT SUM([Sales Amount]) FROM [Sales] ermittelt.
Empfehlungen für Performance-Optimierung bei Dateien und Cloud-Diensten
Achten Sie insbesondere beim Arbeiten mit Dateiformaten, wie Excel-, PDF- oder Textdateien, oder Daten aus Cloud-Diensten wie Google Tabellen zusätzlich auf folgende Punkte:
Verzichten Sie auf Vereinigungen über viele Dateien hinweg, da deren Verarbeitung sehr zeitintensiv ist.
Stellen Sie sicher, dass Sie beim Erstellen des Extrakts die Option »Einzelne Tabelle« wählen, anstatt der Option »Mehrere Tabellen« (siehe Abbildung 2.21). Dadurch wird das erzeugte Extrakt zwar größer und das Erstellen des Extrakts dauert länger, das Abfragen hingegen wird um ein Vielfaches beschleunigt.
Empfehlungen für Performance-Optimierung bei Datenbank-Servern
Arbeiten Sie mit Daten auf einem Datenbank-Server, wie Oracle, PostgreSQL oder Microsoft SQL Server, und möchten die Zugriffszeiten verbessern? Dann achten Sie bzw. der dafür zuständige Datenbankadministrator zusätzlich auf folgende Punkte:
Definieren Sie für Ihre Datenbank-Tabellen sinnvolle Index-Spalten.
Legen Sie für Ihre Datenbank-Tabellen Partitionen an.
How can a Tableau dashboard that displays contacts (name & company) automatically look up LinkedIn profile URLs?
Of course, researching LinkedIn profiles for a huge list of people is a very repetitive task. So let’s find a solution to improve this workflow…
Step by Step: Integrating Azure Cognitive Services in Tableau
1. Python and TabPy
We use Python to build API requests, communicate with Azure Cognitive Services and to verify the returned search results. In order to use Python within Tableau, we need to setup TabPy. If you haven’t done this yet: checkout my TabPy tutorial.
2. Microsoft Azure Cognitive Services
One of many APIs provided by Azure Cognitive Services is the Web Search API. We use this API to search for name + company + „linkedin“. The first three results are then validated by our Python script. One of the results should contain the corresponding LinkedIn profile.
3. Calculated Field in Tableau
Let’s wrap our Python script together and create a Calculated Field in Tableau:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Adding a URL action with our new Calculated Field will do the trick. Now you can click on the LinkedIn icon and a new browser tab (or the LinkedIn app if installed) opens.
This tutorial is just the tip of the iceberg. If you want to dive deeper into the world of data visualization and analytics, don’t forget to order your copy of my new book, Visual Analytics with Tableau (Amazon). This comprehensive guide offers an in-depth exploration of data visualization techniques and best practices.
I’d love to hear your thoughts. Feel free to leave a comment, share this tweet, and follow me on Twitter and LinkedIn for more tips, tricks, and tutorials on Azure Cognitive Services in Tableau and other data analytics topics.
We use cookies to optimize our website and our service.
Functional
Immer aktiv
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.