How to Log your Twitter Follower Stats with IFTTT to a Google Spreadsheet

tstats GitHub repository
The tstats script (on GitHub) logs your Twitter Follower Stats with IFTTT to a Google Spreadsheet

How can we log the follower statistics for a Twitter account?

In order to store these stats, I’d like to use IFTTT’s new Maker channel that was introduced last month. I have created a simple Bash script (tstats.sh) to log this data to a spreadsheet in my Google Drive. I run this as a cron job every 24 hours.

Prerequisites

Ruby:

sudo apt-get install ruby-dev

Twitter CLI:

gem install t

Authorize your Twitter account:

t authorize

A Google account, as the log is saved to a spreadsheet in your Google Drive.

An IFTTT account.

Connect the Maker and Google Drive channels to your IFTTT account.

Usage

cd into the tstats directory and edit the script with your IFTTT secret key, your IFTTT trigger event name and your Twitter screen name. Make the script executable with:

chmod +x tstats.sh

Then simply run it with:

./tstats.sh

If you receive a „Congratulations“ message and an entry is added to your spread sheet, you can go ahead and add it to your cron to run at a predetermined time.

To have this script run every 24 hours, add this to your crontab (you may need to change the path):

42,09 * * * * /home/user/tstats/tstats.sh >/dev/null 2>&1

[Update 26 Jul 2018] Now on GitHub: Yes, three years later this script is still hot! However, WordPress is not the perfect place to host code. As part of my preparation for my TC18 session on Social Media in New Orleans, I moved the code to a GitHub repositroy: https://github.com/aloth/tstats

5 Vorteile von Data Science

Deutschherrnbrücke mit Skyline von Frankfurt am Main
Nicht nur Banken handeln ihre Daten als Gold des 21. Jahrhunderts

Keine Frage, die Digitalisierung prägt unseren Alltag und stellt auch an Banken immer neue Anforderungen. Daten werden als das neue Gold gehandelt. Und genau darin liegt die große Chance der Banken: Finanzinstitute hatten schon immer enorme Mengen an Daten, oft aus vielen verschiedenen Quellen. Aber wie wird das volle Potenzial dieser Daten genutzt und wie werden Erkenntnisse aus diesen gewonnen? Hier kommt Data Science ins Spiel.

Wie gewinnen Sie Erkenntnisse aus Ihren Daten?

Data Science verwendet Methoden aus der Mathematik, Statistik und Informationstechnologie. Data Scientists verfügen darüber hinaus über ausgeprägte Kommunikationsfähigkeiten auf sämtlichen Ebenen eines Unternehmens und bereiten Ergebnisse für das Management der einzelnen Fachabteilungen genauso verständlich auf wie für den CEO. Banken können dazu neben Kontoinformationen auch Kundentransaktionen, Kundenkommunikation, Kanalnutzung, Kundenverhalten und Social-Media-Aktivitäten. Vieles davon wird idealerweise nahezu in Echtzeit verarbeitet und ausgewertet.

Der Daten-Leverage-Effekt:

Da der Bankensektor weiterhin mit knappen Margen und und schwindendem Gewinn zu kämpfen hat, ist es für Finanzinstitute äußerst wichtig einen Hebel anzulegen, um Kosten zu reduzieren, Kunden zu binden und neue Einnahmequellen zu erschließen. Einen solchen Daten-Leverage-Effekt erzielen Sie mit ihren Daten – sofern Sie auf Data Science und damit einhergehend auf eine erweiterte Analyse setzen.

Betrachten Sie diese fünf Vorteile:

  1. Bessere Erkenntnisse: Gewinnen Sie eine neue Sicht auf Ihre treuesten und profitabelsten Kunden und verstehen Sie deren Bedürfnisse bereits vor dem Kundengespräch. Datenanalyse kann helfen, den Überblick zu behalten und Vorschläge für entsprechende Kommunikationskanäle zu liefern.

  2. Kundenbindung: Sorgen Sie für zufriedenere Kunden und finden Wege treue Kunden zu belohnen. Zudem lassen sich Kunden identifizieren, die ggf. eine Kündigung erwägen. Führen Sie dazu die Metriken „Loyalität“ und „Churn“ ein, um hierfür ein Messinstrument zu haben.

  3. Kostengünstiges Marketing: Entwickeln Sie effektives Marketing und Kampagnen, die an die richtige Person zur richtigen Zeit ausgerichtet sind. Dabei hilft Ihnen eine Cluster-Analyse, um Kundensegmente zu identifizieren.

  4. Minimieren von Risiken: Beschleunigen und verbessern Sie Ihr Risiko- und Fraud-Management durch Mustererkennung und Maschinenlernen.

  5. Handeln Sie: Behalten Sie Ihr Dashboard mit den wesentlichen Kennzahlen im Auge und ergreifen Maßnahmen, deren Auswirkung Sie zeitnah beobachten können. Nutzen Sie die Daten und Vorhersagen als Kernelement für Ihre Storyboards mit denen Sie das Top-Management überzeugen.

Nutzen Sie bereits die richtigen Werkzeugen zur Datenanalyse und Datenvisualisierung in Ihrem Unternehmen? Falls nicht, wäre es nun an der Zeit über den Einsatz von Data Science nachzudenken.

Beitrag zuerst veröffentlicht am 19.06.2015 im Capgemini IT-Trends-Blog.

How to unleash Data Science with an MBA?

Servers record a copy of LHC data and distribute it around the world for Analytics

My Data Science journey starts at CERN where I finished my master thesis in 2009. CERN, the European Organization for Nuclear Research, is the home of the Large Hadron Collider (LHC) and has some questions to answer: like how the universe works and what is it made of. CERN collects nearly unbelievable amounts of data – 35 petabytes of data per year that needs analysis. After submitted my thesis, I continued my Data Science research at CERN.

I began to wonder: Which insights are to be discovered beyond Particle Physics? How can traditional companies benefit from Data Science? After almost four exciting years at CERN with plenty of Hadoop and Map/Reduce, I decided to join Capgemini to develop business in Big Data Analysics, and to boost their engagements in Business Intelligence. In order to leverage my data-driven background I enrolled for the Executive MBA program at Frankfurt School of Finance & Management including an Emerging Markets module at CEIBS in Shanghai.

Today companies have realized that Business Analytics needs to be an essential part of their competitive strategy. The demand on Data Scientists grows exponentially. To me, Data Science is more about the right questions being asked than the actual data. The MBA enabled me to understand that data does not provide insights unless appropriately questioned. Delivering excellent Big Data projects requires a full understanding of the business, developing the questions, distilling the adequate amount of data to answer those questions and communicating the proposed solution to the target audience.

„The task of leaders is to simplify. You should be able to explain where you have to go in two minutes.“ – Jeroen van der Veer, former CEO of Royal Dutch Shell

IMF Global Data Explorer

How about some visual takeaways from the IMF’s World Economic Outlook? Recently I prepared two nifty data visualizations with Tableau that I like to share with you.

These visualizations allow you to explore plenty of economical data, including IMF staff estimates until 2020. Don’t forget to choose „Units“ after switching „Subject“ on the right-side bar. A detailed description on each subject is displayed below.

Tableau

Digitale Banken: Welche Anforderungen bringt die Digitalisierung?

Skyline von Frankfurt am Main
Skyline von Frankfurt: Verpassen Banken den Sprung zur Digitalen Bank? (Foto: Flickr)

Retail-Banken stehen bereits in direktem Wettbewerb mit Nicht-Banken. Apple, Google und Paypal stoßen längst in das Privatkundengeschäft der Banken vor, rücken dabei die Kunden in den Mittelpunkt, lösen Banking von klassischen Mustern und schaffen neue Interaktionsmöglichkeiten. Authentifizierung erfolgt per Fingerabdruck und Pulsmessung, der Datenabgleich per Nahfeldkommunikation (NFC) und die Buchung erscheint in Echtzeit auf dem Smartphone oder der Apple Watch.

Diese neuen Player kommen mit ihren disruptiven Innovationen zu einer Zeit, die ohnehin Banken weltweit vor massive Herausforderungen stellt: ein wohl noch lange anhaltendes niedriges Zinsniveau, hoher Kostendruck, zunehmende Regulierung und schwindendes Vertrauen der Kunden. Ethikkodizes zeigen hier bislang keine wirkliche Abhilfe. Stattdessen sollten Retail-Banken selbst den Schritt zur digitalen Bank machen – und das besser früher als später, nicht unkoordiniert nach dem Gießkannenprinzip, sondern mit einer digitalen Strategie.

Das Beste aus zwei Welten

Digitale Banken können Vorteile aus zwei Welten vereinen: einerseits einen klaren Kundenfokus, die Optimierung des Filialnetzes und Transparenz  in der Außendarstellung, andererseits die Integration der Vertriebskanäle und ein effizientes und effektives Geschäftsmodell in der Innenbetrachtung – beides ermöglicht durch die Digitalisierung und den dazugehörigen Technologien, Prozessen und Organisationsstrukturen. Die damit einhergehenden Aufgaben werden allerdings nur jene Banken erfolgreich meistern, deren Management einen weitreichenden kulturellen und strategischen Wandel einleitet und auch Digital Natives bei der Entwicklung und Umsetzung intensiv mit einbezieht.

Es handelt sich dabei um einen Irrtum, dass der Digitalisierung mit der Entwicklung von Apps Genüge getan wäre. Sicher ist es wünschenswert, dass Kunden ihren Sparplan per Schieberegler auf verschiedene Fonds aufteilen können oder in Echtzeit per Push Notification über Zahlungseingänge, Orderausführungen und Kreditkartenbelastungen informiert werden. Doch dies allein wird nicht für den Ausbau des Geschäfts reichen. Vielmehr müssen sich auch die darunter liegende Geschäftsmodelle ändern. In der digitalen Welt gelten Modelle mit Sockel- oder Grundgebühren als überholt. Schließlich fallen bei Ordererteilung via Smartphone keinerlei manuelle und somit kostenintensive Tätigkeiten an.

Neubau der Europäischen Zentralbank (EZB)
Neubau der Europäischen Zentralbank (Foto: Flickr)

Das Multi-Channel-Erlebnis und Crowd Investment

Um das Geschäftsmodell konsequent an den Kunden auszurichten, ist neben dem Erweitern bestehender Dienstleistungen auch eine nahtlose Integration der Vertriebskanäle erforderlich. Die Bankfilialen können mit längeren Öffnungszeiten punkten. In urbanen Zentren bietet sich zudem die Einrichtung von Flagship Stores an. Bei der Beratung stehen die Kunden im Fokus, und nicht die vorgegebenen Vertriebsziele. Unterstützt werden die Kundenberater dabei mit analytischen Tools, die in Echtzeit die Finanzsituation des Kunden voraussagt und zum Beispiel verschiedene Varianten der Baufinanzierung oder das Fremdwährungsrisiko bestimmter Investmentoptionen auf einem Tablet grafisch aufzeigt.

Informationen, die die Kunden preisgeben, werden in einem Customer Relationship System (CRM) gespeichert, und zwar vom Vertriebskanal unabhängig. Auf der anderen Seite bekommen Kunden auf den Online-Portalen stets maßgeschneiderte Empfehlungen. Eine Chatfunktion ermöglicht die persönliche Beratung auch jenseits der Öffnungszeiten. Das kommt insbesondere der attraktiven Zielgruppe der hochvermögende Personen, sogenannte High Net Worth Individuals (HNWI), entgegen, da dieser Personenkreis sehr informationsaffin ist und sich nicht selten erst spät abends oder sonntags neuen Investitionsmöglichkeiten widmet.

Eine entsprechende Community bietet ein Forum für den Austausch der Kunden unter einander. Werden in einem solchen Forum Aktien, Fonds oder Basisprodukte genannt, so werden diese automatisch zu den entsprechenden Angeboten der Bank verlinkt. Einen Schritt weiter geht der Ansatz des Crowd Investments, bei dem sich Kunden den Entscheidungen anderer Anleger anschließen und so beispielsweise Umschichtungen im Depot automatisiert vollzogen werden. Zusätzliche Motivation könnte hierbei durch Gamification in Form von Rankings und Awards geschaffen werden, wie es heute schon bei Fitness-Plattformen üblich ist.

Die Zukunft nicht verpassen

Heute stehen einem solchen Kundenerlebnis häufig IT-Systeme gegenüber, die Daten in abgeschotteten Silos halten und die direkte Verknüpfung, Aggregation und Auswertung somit erschweren. Diese Hürden gilt es zu beseitigen, um die Grundlagen der Digitalisierung zu legen. Verpassen die Banken den Sprung zur Digitalen Bank, werden andere Marktteilnehmer diese Lücken füllen. Die zurückbleibenden Banken müssen sich auf eine Abwanderung von Kunden und sinkende Erträge einstellen. Wie schnell das gehen haben, haben schon andere Branchen leidvoll erfahren müssen. Vor nicht allzu langer Zeit wurden noch Milliarden mit Nokia-Telefonen und dem Versenden von Kurzmitteilungen (SMS) umgesetzt. Beides fand ein sehr schnelles Ende…

Was meinen Sie? Sehen Sie Ihre Bank den Anforderungen der Digitalisierung gewachsen? Ich freue mich darauf, mit Ihnen zu diskutieren.

Beitrag zuerst veröffentlicht am 27.03.2015 im Capgemini IT-Trends-Blog.