Keine Frage, die Digitalisierung prägt unseren Alltag und stellt auch an Banken immer neue Anforderungen. Daten werden als das neue Gold gehandelt. Und genau darin liegt die große Chance der Banken: Finanzinstitute hatten schon immer enorme Mengen an Daten, oft aus vielen verschiedenen Quellen. Aber wie wird das volle Potenzial dieser Daten genutzt und wie werden Erkenntnisse aus diesen gewonnen? Hier kommt Data Science ins Spiel.
Wie gewinnen Sie Erkenntnisse aus Ihren Daten?
KI für Content Creation
Entdecken Sie das neue KI-Buch zu ChatGPT, DALL·E, MidJourney & Co.
Amazon Mehr erfahrenData Science verwendet Methoden aus der Mathematik, Statistik und Informationstechnologie. Data Scientists verfügen darüber hinaus über ausgeprägte Kommunikationsfähigkeiten auf sämtlichen Ebenen eines Unternehmens und bereiten Ergebnisse für das Management der einzelnen Fachabteilungen genauso verständlich auf wie für den CEO. Banken können dazu neben Kontoinformationen auch Kundentransaktionen, Kundenkommunikation, Kanalnutzung, Kundenverhalten und Social-Media-Aktivitäten. Vieles davon wird idealerweise nahezu in Echtzeit verarbeitet und ausgewertet.
Der Daten-Leverage-Effekt:
Da der Bankensektor weiterhin mit knappen Margen und und schwindendem Gewinn zu kämpfen hat, ist es für Finanzinstitute äußerst wichtig einen Hebel anzulegen, um Kosten zu reduzieren, Kunden zu binden und neue Einnahmequellen zu erschließen. Einen solchen Daten-Leverage-Effekt erzielen Sie mit ihren Daten – sofern Sie auf Data Science und damit einhergehend auf eine erweiterte Analyse setzen.
Betrachten Sie diese fünf Vorteile:
- Bessere Erkenntnisse: Gewinnen Sie eine neue Sicht auf Ihre treuesten und profitabelsten Kunden und verstehen Sie deren Bedürfnisse bereits vor dem Kundengespräch. Datenanalyse kann helfen, den Überblick zu behalten und Vorschläge für entsprechende Kommunikationskanäle zu liefern.
-
Kundenbindung: Sorgen Sie für zufriedenere Kunden und finden Wege treue Kunden zu belohnen. Zudem lassen sich Kunden identifizieren, die ggf. eine Kündigung erwägen. Führen Sie dazu die Metriken „Loyalität“ und „Churn“ ein, um hierfür ein Messinstrument zu haben.
-
Kostengünstiges Marketing: Entwickeln Sie effektives Marketing und Kampagnen, die an die richtige Person zur richtigen Zeit ausgerichtet sind. Dabei hilft Ihnen eine Cluster-Analyse, um Kundensegmente zu identifizieren.
-
Minimieren von Risiken: Beschleunigen und verbessern Sie Ihr Risiko- und Fraud-Management durch Mustererkennung und Maschinenlernen.
-
Handeln Sie: Behalten Sie Ihr Dashboard mit den wesentlichen Kennzahlen im Auge und ergreifen Maßnahmen, deren Auswirkung Sie zeitnah beobachten können. Nutzen Sie die Daten und Vorhersagen als Kernelement für Ihre Storyboards mit denen Sie das Top-Management überzeugen.
Nutzen Sie bereits die richtigen Werkzeugen zur Datenanalyse und Datenvisualisierung in Ihrem Unternehmen? Falls nicht, wäre es nun an der Zeit über den Einsatz von Data Science nachzudenken.
Beitrag zuerst veröffentlicht am 19.06.2015 im Capgemini IT-Trends-Blog.
"Visualisierungstools, wie @tableau, helfen @CapgeminiDE Data Scientists komplexe Analysen anschaulich zu machen" pic.twitter.com/J95RHCA9vI
— Alexander Loth (@xlth) June 18, 2015
Warum nicht nur Banken ihre Daten als Gold des 21. Jahrhunderts handeln: @xlth im #itt blog http://t.co/4WgHkkzOaB #bigdata ^mar
— CapgeminiDE (@CapgeminiDE) June 22, 2015