How to enable Multi-Language Sentiment Analysis with R

Have you seen how easy it is to integrate sentiment analysis in your Tableau dashboard – if your text is in English?

Until now the sentiment package for R only worked with English text. Today, I released version 1.0 of the sentiment package on GitHub that features multi-language support. In order to perform sentiment analysis with German text, just add the parameter language="german" as shown in this example:

Demo showing Multi-Language Sentiment Analysis with English and German text
Demo showing Multi-Language Sentiment Analysis with English and German text

The new code allows you to add any language. So far, I started to prepare German sentiment files. French and Spanish sentiment files are on my to-do list.

R You Ready For Advanced Analytics at #data16

Tableau Conference: "What is Advanced Analytics?"
Tableau Conference: „What is Advanced Analytics?“

The main goal of Advanced Analytics is to help organizations make smarter decisions for better business outcomes.

Only a few years ago, Advanced Analytics was based almost entirely on a complex tool chain and plenty of scripting in Gnuplot, Python and R. Today, Tableau enables us to analyze our data at the speed of thought, to connect to our data sources in seconds, to add dimensions and measures on the canvas by dragging and dropping, and to get insights faster than ever before.

However, R still comes in very handy when we want to enrich Tableau’s Visual Analytics approach with advanced features that enables us to ask questions along the entire Analytics stack:

  1. Descriptive Analytics describes what happened, characterized by traditional business intelligence (BI). E.g. visualizations and dashboards to show profit per store, per product segment, or per region.

  2. Diagnostic Analytics, which is also known as Business Analytics, looks into why something is happening, and is characterized by reports to further „slice and dice“ and drill-down data. It answers the questions raised by Descriptive Analytics, such as why did sales go down in a particular region.

  3. Predictive analytics determines what might happen in future („What might happen?“), and needs larger domain expertise and tool set (i.e. Tableau + R). E.g. regression analysis, and forecasting which product segments are likely to perform better in next quarter.

  4. Prescriptive Analytics identifies the actions required in order to influence particular outcome („What should I do?“). E.g. portfolio optimization, and recommendation engines to answer which customer segment shall be targeted next quarter to improve profitability.

  5. Semantic Analytics examines data or content to identify the meaning („What does it mean?“), and suggests what you are looking for and provides a richer response. E.g. sentiment analysis and Latent Semantic Indexing to understand social media streams.

Do you want to learn more about Advanced Analytics and how to leverage Tableau with R? Meet me at the Tableau Conference in Munich (5-7 July) where I deliver the session „R You Ready For Advanced Analytics“.

"Analytics is essential for any competitive strategy"
„Analytics is essential for any competitive strategy“ (further reading: data science + strategy)

Speaking at Conferences and Company Events

I love to share digital strategies and visions with organizations and startups. I also speak regularly at conferences and company events.

Selected events (last updated in Jan 2018):

  1. Hyper Kickoff Event: 5th Frankfurt Analytics + Tableau User Group Meetup„, Tableau Office, Frankfurt, 18 January 2018
  2. Smart Mobility: 4th Frankfurt Analytics + Tableau User Group Meetup„, DB Systel Skydeck, Frankfurt, 13 December 2017
  3. Digital Transformation: How to Build an Analytics-Driven Culture„, Executive Talk, Frankfurt School of Finance & Management, Frankfurt, 8 December 2017
  4. Upcoming Features and the Tableau Roadmap„, The Future of Enterprise Analytics, Hilton Frankfurt Airport, Zürich, 6 December 2017
  5. Upcoming Features and the Tableau Roadmap„, The Future of Enterprise Analytics, Lindner Congress Hotel, Zürich, 14 November 2017
  6. Aligning Data Science and Digital Transformation„, Frankfurt Big Data Lab, Goethe-Universität, Frankfurt, 9 November 2017
  7. Upcoming Features and the Tableau Roadmap„, The Future of Enterprise Analytics, Credit Suisse, Zürich, 1 November 2017
  8. Building an Enterprise Big Data & Advanced Analytics Strategy„, Data Driven Banking Forum, Frankfurt, 25 October 2017
  9. Data Science in Mobility and Logistics„, Design the Smart Mobility – ITS Hackathon, Logistik-Initiative Hamburg, Hamburg, 20-21 October 2017
  10. 3rd Frankfurt Analytics + Tableau User Group Meetup„, Capgemini Office, Frankfurt, 17 October 2017
  11. Social Media and the Customer-centric Data Strategy„, Tableau Conference On Tour, Berlin, 12 September 2017
  12. 2nd Frankfurt Analytics + Tableau User Group Meetup„, Tableau Office, Frankfurt, 28 August 2017
  13. Advanced Analytics School„, Accenture Campus, Kronberg, 25 April-3 May 2017
  14. Aligning Data Science and Digital Transformation„, Accenture Tableau Day, Kronberg, 7 April 2017
  15. Neue datenbasierte Geschäftsmodelle und Big Data„, CeBIT 2017, Hanover, 20-24 March 2017
  16. Top 10 Business Intelligence Trends 2017„, Tableau Webinar, Frankfurt, 21 February 2017
  17. Price and Sentiment Analysis: Why is Bitcoin Going Down?„, Frankfurt Bitcoin Colloquium, Goethe-Universität, Frankfurt, 8 February 2017
  18. Data Science in Mobility and Logistics„, DB Open Data Hackathon, Deutsche Bahn mindbox, Berlin, 16-17 December 2016
  19. Industry 4.0: Self Service BI and Predictive Maintenance„, Institut für Business Intelligence (IBI) Symposium, Stuttgart, 17 November 2016
  20. Why are Advanced Analytics essential for your Data Strategy„, DGI-Praxistage, Goethe-Universität, Frankfurt, 10-11 November 2016
  21. Einsatz im Portfoliomanagement, Risikoanalysen & Reporting„, Tableau & Banking Day, Frankfurt, 8 November 2016
  22. 3 Essential Components to Building a Data Strategy„, Telekom Big Data Days, Frankfurt, 23 September 2016
  23. R You Ready For Advanced Analytics„, Tableau Conference On Tour, Munich, 6 July 2016
  24. Boost your Business with Social Media„, Twitter for Business Tweetup, Deutsche Bahn, Frankfurt, 28 June 2016
  25. Insights from Sensor Data (IoT)„, Accenture Analytics Innovation Day, Kronberg, 24 Juni 2016
  26. Financial Analytics with Tableau„, Sparkassen Future Day, Berlin, 12 May 2016
  27. Financial Analytics with Tableau„, Informatica Financial Services Day, Frankfurt, 11 May 2016
  28. Sentiment Analysis in Tableau using R„, Predictive Analytics Meetup, FinTech Incubator, Frankfurt, 28 April 2016
  29. Why is Data Science Important„, DataFest Germany, LMU, Munich, 1-3 April 2016
  30. Echtzeit-Analysen von Maschinendaten und externen Datenquellen„, CeBIT 2016, Hanover, 14-18 March 2016
  31. Analytics for Everyone, Everywhere, Anytime„, Tableau Experience, Munich, 18 November 2015
  32. Big Data Analytics at Capgemini„, Capgemini, Offenbach, 14 November 2014
  33. Intercultural Aspects for Offshore Projects„, Capgemini, Düsseldorf, 25 July 2014
  34. BI Sourcing Project at Deutsche Telekom„, Capgemini, Offenbach, 28 September 2012
  35. Big Data Analytics in High-Energy Physics„, CERN, Geneva, 23 May 2012
  36. The Expanding Universe of Big Data„, CERN, Geneva, 10 March 2011

Attending an event? Check out the Tableau Event Resources page.

Digitale Banken: Die Zukunft des Privatkundengeschäfts und der Vermögensverwaltung

Interaktive Portfolio-Übersicht mit Tableau
Interaktive Zusammenstellung eines Portfolios mit automatischer Gewichtung auf Grundlage der Sharpe-Ratio

Vor gut einem Jahr habe ich mit dem Blog-Post „Digitale Banken: Welche Anforderungen bringt die Digitalisierung?“ einige Ideen aufgezeigt, wie sich Banken die Digitalisierung zu Nutze machen können. Die Motivation ist meist die Steigerung des Umsatzes, Kostenersparnis und die Erschließung neuer Märkte. Die Herausforderungen sind nach wie vor schwindenden Zinserträge, härtere regulatorische Vorschriften, erhöhter Wettbewerb und anspruchsvolle Kunden.

Seither war ich an vielen weiteren Projekten im Finanzwesen beteiligt und sehe, dass besonders das Privatkundengeschäfts und die Vermögensverwaltung von der Digitalisierung profitieren. Dabei habe ich drei Kernbereiche ausgemacht, die ich nachfolgend etwas mehr in den Fokus rücken möchte.

1. Payment und Zahlungsverkehr

Vielen Menschen fällt es schwer sich die sperrige IBAN zu merken. Die Email-Adressen, die Handynummer und den Fingerabdruck haben die meisten allerdings immer parat. Neue technische Möglichkeiten treffen so auf veränderte Verbraucherbedürfnisse. Zahlungen werden immer häufiger mit dem Smartphone abgewickelt – ohne Eingabe einer IBAN. Zahlungen werden schneller – kein ganzer Tag vergeht zwischen Kontobelastung und Gutschrift, sondern nur wenige Sekunden.

Außerdem werden Zahlungen dezentral. Dazu befasst sich der Finanzsektor zunehmend mit der Blockchain-Technologie (wie hier die Deutsche Bank), mit welcher nicht nur Überweisungen sondern auch Wertpapierhandel möglich sind. Insbesondere große Institute tun sich mit der Blockchain-Technologie allerdings schwer, da die zentrale Kontrolle des Zahlungsverkehrs auch als Instrument zur Kundenbindung verstanden wird.

2. Finanzierung und Kreditvergabe

Bei der Finanzierung und Kreditvergabe stehen neue/bessere Algorithmen im Mittelpunkt. Mit diesen möchte man stets folgende Fragen beantworten: Wie lässt sich der Credit Score optimal ermitteln? Wie empfehlen wir unseren Kunden proaktiv das richtige Finanzprodukt?

Die Konstruktion von Entscheidungsbäumen, eine Form des Maschinellen Lernens, ist für solche Algorithmen eine tragende Säule. Hierbei ist es ratsam die Ergebnisse immer wieder zu kontrollieren und gegebenfalls über Parameter die Gewichtung bestimmter Variablen zu korrigieren. Sonst kann es womöglich passieren, dass einem Gutverdiener der Dispo gestrichen wird, weil sein Gehaltseingang nicht als solcher erkannt wird; oder einem Rentner ein Bausparvertrag angepriesen wird, weil sein Social-Media-Profil einen solchen Bedarf vermuten lässt.

3. Beratungsplattformen für die Vermögensanlage

Zu Zeiten der Null-Zins-Politik ist bei der Vermögensanlage zunehmend Kreativität gefragt. Diese lässt sich schwer in starren Systemen aus dem Zeitalter der Mainframes abbilden. Stattdessen lassen sich Anlagestrategien aus unterschiedlichen Blickwinkeln mit Analytics-Anwendungen, wie Tableau („Datenanalyse für Banken„), beleuchten und sich ggf. um quantitative Funktionalität aus R anreichern.

Beispielsweise lässt sich mit Hilfe der Sharpe-Ratio interaktiv eine optimale Portfolio-Gewichtung berechnen, und die Williams-Percent-Range als Indikator für Chart-Trends nutzen. Ein solcher Self-Service-Gedanke passt zur Unternehmenskultur der Datendemokratisierung und lässt auch die Mitarbeiter aus Vertrieb und Beratung an der Digitalisierung teilhaben.

 

Alle hier gezeigten Beispiele sind echten Szenarien nachempfunden. Die Portfolio-Optimierung kann als Tableau Packaged Workbook (twbx) hier heruntergelanden werden, und benötigt Tableau mit R-Integration. Auch hierzu freue ich mich wieder über Feedback, Fragen und Anregungen…

Predictive Maintenance Beispiele: 4 Methoden zur Kostenoptimierung durch Predictive Maintenance

Predictive Maintenance Beispiele: PdM Dashboard auf Tableau Mobile und IoT Realtime Feed auf Tableau Desktop
Predictive Maintenance Beispiele: PdM Dashboard auf Tableau Mobile und IoT Realtime Feed auf Tableau Desktop

Einführung: Warum ist Predictive Maintenance wichtig?

Instandhaltungskosten tragen wesentlich zu den Produktionskosten bei, wobei sie je nach Branche auf 15 bis 60 Prozent der Gesamtkosten geschätzt werden. Predictive Maintenance (PdM), die vorausschauende Instandhaltung, hat das Potenzial, diese Kosten deutlich zu senken.

Unsere Erfahrungen und die ausführlichen Beispiele in meinem Buch zur Digitalisierung Decisively Digital: From Creating a Culture to Designing Strategy (Amazon) zeigen, dass Predictive Maintenance die Gesamtkosten einer Maschine während ihrer gesamten Lebensdauer reduzieren kann.

Das Prinzip von Predictive Maintenance

Predictive Maintenance zielt darauf ab, den Ausfall einer Maschine vorherzusagen und somit die Wartung zu optimieren. Die Wartungsarbeiten erfolgen nur dann, wenn ein Ausfall voraussichtlich eintreten wird. Doch wie lässt sich diese Vorhersage treffen?

Jene Vorhersagen, die häufig im Kontext mit Industrie 4.0 gesehen werden, lassen sich auf Grundlage folgender Fakten treffen:

  • Aktuelle Sensordaten: Wie verhält sich die Maschine gegenwärtig?
  • Historische Sensordaten: Wie hat sich die Maschine in der Vergangenheit verhalten?
  • Benachbarte Sensordaten: Wie haben sich andere, ähnliche Maschinen verhalten?
  • Instandhaltungsprotokoll: Wann wurde die Maschine zuletzt gewartet oder getauscht?
  • Instandhaltungsempfehlung: Welche Wartungsintervalle empfiehlt der Hersteller?

Methoden zur Interpretation von IoT-Daten

Solche Daten aus dem Internet der Dinge (IoT) lassen sich nun nicht ohne weiteres sinnvoll auf einem Dashboard darstellen. Ein Blick auf die bloßen Daten lässt hier kaum Schlüsse zu. So ist es für erfolgreiches Predictive Maintenance essentiell, dass statistische Methoden wie diese angewandt werden:

1. Mustererkennung: Durch das Identifizieren von Mustern zwischen bestimmten Ereignissen und Maschinenausfällen können wir voraussagen, wann und warum eine Maschine ausfallen könnte. Zum Beispiel könnte eine Maschine, die bei der Verarbeitung eines bestimmten Materials besonders belastet wird, eher ausfallen.

2. Trendmodell: Ein Trendmodell gibt den zeitlichen Verlauf der Maschinenperformance bis zu einem Ausfall wieder. Dies kann durch verschiedene Regressionsansätze modelliert und in drei Komponenten unterteilt werden: Trend, Saison und Rauschen.

3. Ereigniszeitanalyse: Die Analyse historischer Daten zu Ausfällen liefert ein weiteres Modell, das gegen aktuelle Messdaten gelegt werden kann, um damit die Dauer bis zum nächsten Ausfall bestimmen zu können.

4. Kritische Schwellwerte: Eine Überprüfung, ob bestimmte Schwellenwerte überschritten wurden, kann ebenfalls Hinweise auf einen bevorstehenden Ausfall geben. Diese Schwellenwerte können initial von Experten festgelegt und später durch maschinelles Lernen angepasst werden.

Diese Methoden lassen sich zum Beispiel in Python und R implementieren. Die Resultate zeigen konkrete Handlungsempfehlungen und eignen sich somit ausgezeichnet für Dashboards, die auch auf Tablets oder Smartphones gut zur Geltung kommen und fortlaufend aktualisiert werden.

Feedback und weiterführende Literatur

Wenn Sie mehr über Predictive Maintenance und über die Anwendung von digitalen Strategien in Ihrer Organisation erfahren möchten, empfehle ich Ihnen mein Buch Decisively Digital: From Creating a Culture to Designing Strategy (Amazon).

Was sind Ihre Gedanken zu Predictive Maintenance? Welche Daten und Methoden nutzen Sie für Ihre Instandhaltungsstrategie? Ich freue mich auf Kommentare und Anregungen. Teilen Sie uns Ihre Erfahrungen und Vorschläge in den Kommentaren mit:

Update: Predictive Maintenance mit Tableau wird außerdem auf der CeBIT am Stand der Deutschen Telekom im Rahmen von „Echtzeit-Analysen von Maschinendaten und externen Datenquellen“ vorgestellt:

„Predictive Maintenance Beispiele: 4 Methoden zur Kostenoptimierung durch Predictive Maintenance“ weiterlesen