Ledger Nano S - The secure hardware wallet

#TC18 Sessions: Rock your Social Media Data with Tableau

My TC18 sessions in New Orleans: "Rock your Social Media Data with Tableau"
My TC18 sessions in New Orleans: “Rock your Social Media Data with Tableau”

Anyone can analyze basic social media data in a few steps. But once you’ve started diving into social analytics, how do you bring it to the next level? This session will cover strategies for scaling a social data program. You’ll learn skills such as how to directly connect to your social media data with a Web Data Connector, considerations for building scalable data sources, and tips for using metadata and calculations for more sophisticated analysis.

First session: Tues, 23 Oct,  12:30-1:30 (Location: MCCNO – L3 – 333)

Second session: Wed, 24 Oct, 10:15-11:15 (Location: MCCNO – L3 – 346)

Twitter Analysis #TC18 Dashboard on Tableau Public
Twitter Analysis #TC18 Dashboard on Tableau Public

Here are some key takeaways and links (i.e. additional resources) featured during my TC18 sessions to help you formulate your social media data program in order to build a stronger presence and retrieve powerful insights:

Prolog: The Data Opportunity

CERN is well known for its Large Hadron Collider and for its massive amount of data. However since some years social media data started to grown exponentially, and that trend seems to contiune.

The Data Opportunity
Step 1: Understand How to Succeed with Social Media

Apple has officially joined Instagram on 7th August 2017. This isn’t your average corporate account as the company doesn’t want to showcase its own products. Instead, Apple is going to share photos shot with an iPhone:

The Customer-Centric Data Strategy

Apple’s Instagram account is more an extension of the “Shot on iPhone” billboard ad campaign.

And there are plenty takeaways for every business:

  • Wrap your data around your customers, in order to create business value
  • Interact with your customer in a natural way
  • Understand your customer and customer behaviour better by analyzing social media data

Step 2: Define Your Social Objectives and KPIs

A previous record-holding tweet: In 2014, actor and talk show host Ellen DeGeneres took a selfie with a gaggle of celebrities while hosting the Oscars. That photo has 3.44 million retweets at the time of writing:

Social Objectives:

  • Define specific KPIs for social media platforms
  • KPI objectives need to be measurable
  • Metrics should be in line with the business goals

Step 3: Assemble Your KPIs

Brand Awareness and Reputation

Step 4: Connect Your Social Media with Tableau

Option 1 – Directly from the platform: Get data directly from Facebook, Twitter, YouTube, and more

Option 2 – Via web automation: Use a service like IFTTT to store data on Google Sheets

Option 3 – Via web data connector: Use Tableau’s web data connector, e.g. the Twitter Web Data Connector by Alex Ross (a.k.a. Tableau Junkie) -> http://bit.ly/tc18_twitter

Option 4 – Code your own solution: Use an API provided by the platform -> http://bit.ly/tc17_r_fetch

Option 5 – Via a third party platform: Get data from an integrated social media platform, such as Talkwalker -> http://bit.ly/tc17_talkwalker

Talkwalker - Via a Third Party Platform

Step 5: Apply some Tips to Level Up

Gather Historic Data

Step 6: Explore Social Media Listening

Social listening means that you look beyond your own content. E.g. Talkwalker offers AI for image recognition and ggregation for online/offline media: http://bit.ly/tc17_talkwalker

Step 7: Leverage Your Analytics Tool Chain

Use Your R and Python Skills

Demo/Tutorial: Let’s See this in Tableau!

How to analyse Social Media traffic with Google Analytics in Tableau (YouTube):

How to analyse Social Media data from Twitter in Tableau (YouTube):

Slide Set

The slides presented at Tableau Conference are also available on SlideShare.

Are you on Social Media?

Feel free to retweet/share:

Join my Social Media Analytics sessions at Tableau Conference #data18

Are you ready for Tableau Conference 2018? Don’t miss my Social Media Analytics sessions!

Why do we need Social Media Analytics?

Social Media Analytics transforms raw data from social media platforms into insight, which in turn leads to new business value.

What will your learn in this sessions?

Once you dive into Social Media Analytics, how do you bring it to the next level? Social data can offer powerful insights right away. In this session, you will learn how to build a mature social data program from that foundation and strategies for scaling a social data programme, as well as how to connect directly to your social media data with a web data connector; considerations for building scalable data sources; and tips for using metadata and calculations for more sophisticated analysis.

Where and when are the sessions?

Do you want to learn more about Social Media Analytics with Tableau? Meet me at the 2018 Tableau Conferences in London or New Orleans and join my sessions:

Anything to prepare?

Yes, I’m glad that you ask:

[Update 5 Jul 2018]:

[Update 6 Jul 2018]:

Social Media and the Customer-centric Data Strategy #data17 #resources

Social media marketing mix
Do you analyze your social media marketing mix? | Photo Credit: via Richard Goodwin

With over 3 billion active social media users, establishing an active presence on social media networks is becoming increasingly essential in getting your business front of your ideal audience. These days, more and more consumers are looking to engage, connect and communicate with their favorite brands on social media.

Adding social media to your customer-centric data strategy will help boost brand awareness, increase followership, drive traffic to your website and generate leads for your sales funnel. In 2017, no organization should be without a plan that actively places their brand on social media, and analyzes their social media data.

Once you’ve started diving into social media analytics, how do you bring it to the next level? This session covers a customer-centric data strategy for scaling a social media data program.

Here are the links (i.e. additional resources) featured during the session to help you formulate your social media data program in order to build a stronger presence and retrieve powerful insights:

The Data Opportunity

TC17 Social Media Slides: The Data Opportunity

Focus on relevant metrics for your strategy

TC17 Social Media Slides: Sentiment Analysis

How to get Social Media in Tableau?

TC17 Social Media Slides: 3rd Party Platform Talkwalker

Tips to Level Up

TC17 Social Media Slides: Unshorten URLs in Tableau with R

Tutorials and Slide Set

The slides and tutorials presented at Tableau Conference on Tour in Berlin are also available on SlideShare, and on YouTube in English and German.

English Tutorials

German Tutorials

Slide Set

Enabling Multi-Language Sentiment Analysis

Have you seen how easy it is to integrate sentiment analysis in your Tableau dashboard – if your text is in English?

Until now the sentiment package for R only worked with English text. Today, I released version 1.0 of the sentiment package that features multi-language support. In order to perform sentiment analysis with German text, just add the parameter language="german" as shown in this example:

German sentiment analysis

The new code allows you to add any language. So far, I started to prepare German sentiment files. French and Spanish are coming…

How to implement Sentiment Analysis in Tableau using R?

Interactive sentiment analysis with Tableau 9.2
Interactive sentiment analysis with Tableau 9.2

In my previous post I highlighted Tableau’s text mining capabilities, resulting in fancy visuals such as word clouds:

Today I’d like to follow up on this and show how to implement sentiment analysis in Tableau using Tableau’s R integration. Some of the many uses of social media analytics is sentiment analysis where we evaluate whether posts on a specific issue are positive, neutral, or negative (polarity), and which emotion in predominant.

What do customers like or dislike about your products? How do people perceive your brand compared to last year?

In order to answer such questions in Tableau, we need to install an R package that is capable of performing the sentiment analysis. In the following example we use an extended version of the sentiment package, which was initiated by Timothy P. Jurka.

The sentiment package requires the tm and Rstem packages, so make sure that they are installed properly. Execute these commands in your R console to install sentiment from GitHub (see alternative way to install at the end of this blog post):

The sentiment package offers two functions, which can be easily called from calculated fields in Tableau:

Screenshot 2016-01-31 15.25.24 crop

The function get_polarity returns “positive”, “neutral”, or “negative”:

The function get_emotion returns “anger”, “disgust”, “fear”, “joy”, “sadness”, “surprise”, or “NA”:

The sentiment package follows a lexicon based approach and comes with two files emotions_english.csv.gz (source and structure) and subjectivity_english.csv.gz (source and structure). Both files contain word lists in English and are stored in the R package library under /sentiment/data directory.

If text is incorrectly classified, you could easily fix this issue by extending these two files. If your aim is to analyze text other than English, you need to create word lists for the target language. Kindly share them in the comments!

Feel free to download the Packaged Workbook (twbx) here.

[Update 11 Aug 2016]: If you are having trouble with install_github, try to install directly form this website: