4 Methoden um mit Predictive Maintenance Kosten zu senken

Predictive Maintenance Dashboard auf Tableau Mobile und IoT Realtime Feed auf Tableau Desktop
Predictive Maintenance Dashboard auf Tableau Mobile und IoT Realtime Feed auf Tableau Desktop

Instandhaltungskosten machen einen großen Teil der Fertigungskosten aus. Je nach Industrie werden die Instandhaltungskosten auf 15 bis 60 Prozent der Gesamtkosten geschätzt.

Das Ziel von Predictive Maintenance (PdM), der vorausschauenden Instandhaltung, ist es vorherzusagen wann eine Maschine ausfällt. Wird Predictive Maintenance als Instandhaltungsstrategie eingesetzt, werden Maschinen nur noch gewartet, sobald ein Ausfall vermutlich eintreten wird. Somit hilft Predictive Maintenance die Instandhaltungskosten deutlich zu senken.

Jene Vorhersagen, die häufig im Kontext mit Industrie 4.0 gesehen werden, lassen sich auf Grundlage folgender Fakten treffen:

  • Aktuelle Sensordaten: Wie verhält sich die Maschine gegenwärtig?
  • Historische Sensordaten: Wie hat sich die Maschine in der Vergangenheit verhalten?
  • Benachbarte Sensordaten: Wie haben sich andere, ähnliche Maschinen verhalten?
  • Instandhaltungsprotokoll: Wann wurde die Maschine zuletzt gewartet oder getauscht?
  • Instandhaltungsempfehlung: Welche Wartungsintervalle empfiehlt der Hersteller?

Solche Daten aus dem “Internet der Dinge” (IoT) lassen sich nun nicht ohne weiteres sinnvoll auf einem Dashboard darstellen. Ein Blick auf die bloßen Daten lässt hier kaum Schlüsse zu. So ist es für erfolgreiches Predictive Maintenance essentiell, dass statistische Methoden wie diese angewandt werden:

1. Mustererkennung: Das Erkennen von Abhängigkeiten zwischen bestimmten Ereignissen und Ausfällen von Maschinen zeigt zum Beispiel auf, dass eine Maschine ausfällt, die durch die Verarbeitung eines bestimmten Materials besonders belastet worden ist.

2. Trendmodell: Der Trend gibt den Verlauf der Zeitreihe bis zum Ausfall der Maschine wieder. Die Modellierung erfolgt mit Hilfe verschiedener Regressionsansätze und umfasst eine Trendkomponente, eine Saisonkomponente und eine Rauschkomponente.

3. Ereigniszeitanalyse: Die Analyse historischer Daten zu Ausfällen liefert ein weiteres Modell, das gegen aktuelle Messdaten gelegt werden kann, um damit die Dauer bis zum nächsten Ausfall bestimmen zu können.

4. Kritische Schwellwerte: Die Prüfung, ob bestimmte Schwellwerte überschritten worden sind. Solche Schwellwerte werden initial von Experten festgelegt, können aber später durch Maschinelles Lernen korrigiert werden.

Diese Methoden lassen sich zum Beispiel in R implementieren. Die Resultate zeigen konkrete Handlungsempfehlungen und eignen sich somit ausgezeichnet für Dashboards, die auch auf Tablets oder Smartphones gut zur Geltung kommen und fortlaufend aktualisiert werden.

Welche Daten und Methoden nutzen Sie für Ihre Instandhaltungsstrategie? Ich freue mich auf Kommentare und Anregungen.

[Update 16 Mar 2016]: Predictive Maintenance mit Tableau wird außerdem auf der CeBIT 2016 am Stand der Deutschen Telekom im Rahmen von “Echtzeit-Analysen von Maschinendaten und externen Datenquellen” vorgestellt:

How to load data to Hadoop with Alteryx and visualize with Tableau via Impala?

This YouTube tutorial shows you a handy way to load your Excel data to Cloudera Hadoop with Alteryx, and how to see and understand your data even faster with Tableau connected to Impala.

The same tool chain to load and access data can be used with Hive (eg. on Hortonworks) or Spark SQL (eg. on MapR). A overview on common data process technologies can be found in the Big Data jungle guide.

Quantitative Finance Applications in R

Do you want to do some quick, in depth technical analysis of stock prices?

After I left CERN to work as consultant and to earn an MBA, I was engaged in many exciting projects in the finance sector, analyzing financial data, such as stock prices, exchange rates and so on. Obviously there are a lot of available models to fit, analyze and predict these types of data. For instance, basic time series model arima(p,d,q), Garch model, and multivariate time series model such as VARX model, state space models.

Although it is a little hard to propose a new and effective model in a short time, I believe that it is also meaningful to apply the existing models and methods to play the financial data. Probably some valuable conclusions will be found. For those of you who wish to have data to experiment with financial models, I put together a web application written in R:

Quantitative Finance Analysis in R (click image to open application)

How to unleash Data Science with an MBA?

Servers record a copy of LHC data and distribute it around the world for Analytics

My Data Science journey starts at CERN where I finished my master thesis in 2009. CERN, the European Organization for Nuclear Research, is the home of the Large Hadron Collider (LHC) and has some questions to answer: like how the universe works and what is it made of. CERN collects nearly unbelievable amounts of data – 35 petabytes of data per year that needs analysis. After submitted my thesis, I continued my Data Science research at CERN.

I began to wonder: Which insights are to be discovered beyond Particle Physics? How can traditional companies benefit from Data Science? After almost four exciting years at CERN with plenty of Hadoop and Map/Reduce, I decided to join Capgemini to develop business in Big Data Analysics, and to boost their engagements in Business Intelligence. In order to leverage my data-driven background I enrolled for the Executive MBA program at Frankfurt School of Finance & Management including an Emerging Markets module at CEIBS in Shanghai.

Today companies have realized that Business Analytics needs to be an essential part of their competitive strategy. The demand on Data Scientists grows exponentially. To me, Data Science is more about the right questions being asked than the actual data. The MBA enabled me to understand that data does not provide insights unless appropriately questioned. Delivering excellent Big Data projects requires a full understanding of the business, developing the questions, distilling the adequate amount of data to answer those questions and communicating the proposed solution to the target audience.

“The task of leaders is to simplify. You should be able to explain where you have to go in two minutes.” – Jeroen van der Veer, former CEO of Royal Dutch Shell

A Data Processing Guide in the Big Data Jungle

Too many choices? Don’t get lost!

We are deep in the Big Data jungle. According to Gartner’s Hype Cycle for Emerging Technologies, Big Data has now officially passed the “peak of inflated expectations”, and is now on a one-way trip to the “trough of disillusionment”. Gartner says it’s done so rather fast, because we already have consistency in the way we approach this technology, and because most new advances are additive rather than revolutionary.

Pig, Hive, Impala, Tez and Spark: which one suits for which use case?

With so much hype and so many new advances, it’s easy to get lost. This little guide gives you an overview on data processing technologies in the Big Data jungle and tries to identify the best use cases for each.

  • Pig: Pig is often useful for pulling apart unstructured and nested data like text or JSON. Since Pig Latin is a procedural language, it is a very good choice for developing data pipelines on Hadoop. Pig is based on MapReduce and has tools for data storage, data execution and data manipulation.
  • Hive: Hive was original “relational on Hadoop” and is the first Hadoop SQL (HiveQL to be precise) query engine. Hive is still the most mature engine from all in this guide, as well as the slowest one. Hive is also based on MapReduce and is a very good choice for heavy ETL tasks where reliability is important, eg. daily aggregation jobs.
  • Impala: Impala is the only native open-source SQL query engine in the Hadoop world. It skips MapReduce entirely and is best used for SQL queries over big volumes. Impala is also capable of delivering results interactively over bigger volumes and with a much faster speed than other Hadoop query engines.
  • Tez: Tez may be considered as a better and faster base for query engines like Pig and Hive. Tez gets around limitations imposed by MapReduce and enables use cases with near-real-time performance and Machine Learning, which do not fit well into the MapReduce paradigm.
  • Spark: Spark is an in-memory query engine that also skips MapReduce. Perfect use cases for Spark are streaming, interactive data processing and ad-hoc analysis of moderate-sized data sets (as big as the cluster’s RAM). The ability of Spark to reuse data in-memory is the real highlight for these use cases. Spark SQL offers relational connectivity.