4 Methoden um mit Predictive Maintenance Kosten zu senken

Predictive Maintenance Dashboard auf Tableau Mobile und IoT Realtime Feed auf Tableau Desktop
Predictive Maintenance Dashboard auf Tableau Mobile und IoT Realtime Feed auf Tableau Desktop

Instandhaltungskosten machen einen großen Teil der Fertigungskosten aus. Je nach Industrie werden die Instandhaltungskosten auf 15 bis 60 Prozent der Gesamtkosten geschätzt.

Das Ziel von Predictive Maintenance (PdM), der vorausschauenden Instandhaltung, ist es vorherzusagen wann eine Maschine ausfällt. Wird Predictive Maintenance als Instandhaltungsstrategie eingesetzt, werden Maschinen nur noch gewartet, sobald ein Ausfall vermutlich eintreten wird. Somit hilft Predictive Maintenance die Instandhaltungskosten deutlich zu senken.

Jene Vorhersagen, die häufig im Kontext mit Industrie 4.0 gesehen werden, lassen sich auf Grundlage folgender Fakten treffen:

  • Aktuelle Sensordaten: Wie verhält sich die Maschine gegenwärtig?
  • Historische Sensordaten: Wie hat sich die Maschine in der Vergangenheit verhalten?
  • Benachbarte Sensordaten: Wie haben sich andere, ähnliche Maschinen verhalten?
  • Instandhaltungsprotokoll: Wann wurde die Maschine zuletzt gewartet oder getauscht?
  • Instandhaltungsempfehlung: Welche Wartungsintervalle empfiehlt der Hersteller?

Solche Daten aus dem “Internet der Dinge” (IoT) lassen sich nun nicht ohne weiteres sinnvoll auf einem Dashboard darstellen. Ein Blick auf die bloßen Daten lässt hier kaum Schlüsse zu. So ist es für erfolgreiches Predictive Maintenance essentiell, dass statistische Methoden wie diese angewandt werden:

1. Mustererkennung: Das Erkennen von Abhängigkeiten zwischen bestimmten Ereignissen und Ausfällen von Maschinen zeigt zum Beispiel auf, dass eine Maschine ausfällt, die durch die Verarbeitung eines bestimmten Materials besonders belastet worden ist.

2. Trendmodell: Der Trend gibt den Verlauf der Zeitreihe bis zum Ausfall der Maschine wieder. Die Modellierung erfolgt mit Hilfe verschiedener Regressionsansätze und umfasst eine Trendkomponente, eine Saisonkomponente und eine Rauschkomponente.

3. Ereigniszeitanalyse: Die Analyse historischer Daten zu Ausfällen liefert ein weiteres Modell, das gegen aktuelle Messdaten gelegt werden kann, um damit die Dauer bis zum nächsten Ausfall bestimmen zu können.

4. Kritische Schwellwerte: Die Prüfung, ob bestimmte Schwellwerte überschritten worden sind. Solche Schwellwerte werden initial von Experten festgelegt, können aber später durch Maschinelles Lernen korrigiert werden.

Diese Methoden lassen sich zum Beispiel in R implementieren. Die Resultate zeigen konkrete Handlungsempfehlungen und eignen sich somit ausgezeichnet für Dashboards, die auch auf Tablets oder Smartphones gut zur Geltung kommen und fortlaufend aktualisiert werden.

Welche Daten und Methoden nutzen Sie für Ihre Instandhaltungsstrategie? Ich freue mich auf Kommentare und Anregungen.

[Update 16 Mar 2016]: Predictive Maintenance mit Tableau wird außerdem auf der CeBIT 2016 am Stand der Deutschen Telekom im Rahmen von “Echtzeit-Analysen von Maschinendaten und externen Datenquellen” vorgestellt: