Challenges of Big Data Analytics in High-Energy Physics

Challenges of Big Data Analytics: volume, variety, velocity and veracity
Screenshot of CERN Big Data Analytics presentation

There are four key issues to overcome if you want to tame Big Data: volume (quantity of data), variety (different forms of data), velocity (how fast the data is generated and processed) and veracity (variation in quality of data). You have to be able to deal with lots and lots, of all kinds of data, moving really quickly.

That is why Big Data Analytics has a huge impact on how we plan CERN’s overall technology strategy as well as specific strategies for High-Energy Physics analysis. We want to profit from our data investment and extract the knowledge. This has to be done in a proactive, predictive and intelligent way.

The following presentation shows you how we use Big Data Analytics to improve the operation of the Large Hardron Collider.

Datenvisualisierung mit Tableau (mitp Professional)
Alexander Loth - Publisher: mitp - Edition no. 2018 (31.07.2018) - Broschiert: 224 pages
29,99 EUR
Data Science mit Python: Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn (mitp Professional))
Jake VanderPlas - Publisher: mitp - Edition no. 2018 (30.11.2017) - Broschiert: 552 pages
49,99 EUR
Data Science für Unternehmen: Data Mining und datenanalytisches Denken praktisch anwenden (mitp Business)
Foster Provost, Tom Fawcett - Publisher: mitp - Edition no. 12017 (30.10.2017) - Taschenbuch: 432 pages
34,99 EUR