3 Essential Components to building a Data Strategy

data-strategy-slide
Three core elements of a Data Strategy Plan for the telecommunications industry

Does your enterprise manage data as a corporate asset? Many companies don’t. Here’s how to get started with the three core elements for your Data Strategy Plan.

1. Data

The ongoing digital transformation of our environment has created an enormous amount of data about just every aspect of what we are doing. Every website we visit, every link we click, every search engine term, every purchase is recorded associated either with our online identity if we have logged in, or in a system that saves our session through cookies or digital fingerprinting.

Once gathered, data across the enterprise are typically stored in silos belonging to business functions (vertical silos), business units (horizontal silos), or even different projects within the same division (segmented silo). Making this data a valuable and useful asset will require to break down the silos. This may not be so easy to accomplish, due to ownership issues, regulatory concerns, and governance practices.

2. Analytics

Collecting data alone does not generate value. The completeness of your Advanced Analytics stack and the complexity of the applied models determine how „smart“ your insights will be and therefore how deep the level of business impact will get. Prescriptive and Semantic Analytics might be tough to implement, especially, if you need to find a way to classify semi-structured data, such as social media streams.

While you look to apply sophisticated models, you should not forget to collect the low-hanging fruits and see if you put in all your quantitative information, such as revenue data, to scale out your diagnostic capabilities.

3. Decision-support Tools

Now you need intuitive tools that integrate data into sustainable processes and apply your analytic models to generate information that can be used for your business decisions. Depending on the stakeholder, the outcome might be presented as a self-service web front end, such as a Network Performance Monitor that allows predictive maintenance, or an Executive dashboard that provides your CFO the latest numbers for upcoming M&A.

An important consideration for your decision-support tools is user acceptance. Decision-support tools should be easy to use and should not make processes more complicated. Instead, consider adding buttons that trigger actions directly from the user interface.

This content is part of the session „3 Essential Components to building a Data Strategy“ that I delivered at Telekom Big Data Days 2016. Have a look at my upcoming sessions!

Daten-Demokratisierung: Daten sind DER Rohstoff der Zukunft

Tableau Conference 2015 Dev-Keynote
Tableau Conference 2015 Dev-Keynote

Auf der Tableau Conference 2015 wurde eines besonders deutlich: Datenanalyse ist unverzichtbar und relevant für alle Unternehmensbereiche. Daten für alle Mitarbeiter im Unternehmen nutzbar machen, nennt man auch Daten-Demokratisierung. Damit können dann Entscheidungen getroffen werden, die auf konkreten, leicht verständlichen und auf das Unternehmen bezogenen Daten basieren.

Daten werden somit zum Rohstoff der Zukunft eines jeden Unternehmens!

Daten-Demokratisierung funktioniert nur dann, wenn Daten mit Self-Service-Tools, wie Tableau, zugänglich gemacht werden, sodass die Daten auch ohne tiefes technisches Wissen analysiert werden können. Neben klassischen Datenquellen wie ERP- und CRM-Systemen entstehen auch in anderen Bereichen relevante Daten, z.B. dateibasierte Formate wie Excel, oder Cloud-Dienste wie Microsoft Azure.

Transition from Academia to Capgemini: A New Chapter in Data and Analytics

CERN Main Auditorium: my transition from academia to Capgemini
CERN Main Auditorium: my transition from academia to Capgemini

After enjoying research for the last four years, especially during my time at CERN, I have made a significant decision. I have decided to resign from my postgraduate position and make a transition from academia to the exciting world of Capgemini. My passion for Data and Analytics remains strong and will be the core focus of my new role.

Capgemini: A New Adventure After Academia

Capgemini, one of the world’s largest consulting corporations, has caught my attention. Unlike many other consulting companies, Capgemini does not yet have a dedicated team to offer effective strategies and solutions employing Big Data, Analytics, and Machine Learning. This presents an exciting opportunity for me to contribute and innovate.

My Vision: Building a Data-Driven Future at Capgemini

I love these technologies and am confident in my ability to elaborate a business development plan to drive business growth. Through customer and market definition, my plan includes new services such as:

  • Data Science Strategy: Enabling organizations to solve problems with insights from analytics.
  • Consulting: Answering questions using data.
  • Development: Building custom tools like interactive dashboards, pipelines, customized Hadoop setup, and data prep scripts.
  • Training: Offering various skill levels of training, from basic dashboard design to deep dives in R, Python, and D3.js.

This plan also includes a go-to-market strategy, which I’ll keep under wraps for now. Stay tuned for a retrospective reveal in the future!

Reflecting on My Transition from Academia

Making this transition from academia to a corporate role has been a considered decision. As I previously shared in my reflection on my software engineering internship at SAP, the blend of technological challenges and team collaboration has always intrigued me. Joining Capgemini allows me to continue pursuing my passion for data in a dynamic business environment.

Conclusion: Exciting Times Ahead

This transition from academia to Capgemini marks a thrilling new chapter in my career. I look forward to leveraging my expertise in Data and Analytics to contribute to Capgemini’s growth and innovation.

Follow my journey as I explore the intersection of data, technology, and business. Connect with me on Twitter and LinkedIn.