Join my Social Media Analytics sessions at Tableau Conference #TC18

Are you ready for Tableau Conference 2018? Don’t miss my Social Media Analytics sessions!

Why do we need Social Media Analytics?

Social Media Analytics transforms raw data from social media platforms into insight, which in turn leads to new business value.

What will your learn in this sessions?

Once you dive into Social Media Analytics, how do you bring it to the next level? Social data can offer powerful insights right away. In this session, you will learn how to build a mature social data program from that foundation and strategies for scaling a social data programme, as well as how to connect directly to your social media data with a web data connector; considerations for building scalable data sources; and tips for using metadata and calculations for more sophisticated analysis.

Where and when are the sessions?

Do you want to learn more about Social Media Analytics with Tableau? Meet me at the 2018 Tableau Conferences in London or New Orleans and join my sessions:

Anything to prepare?

Yes, I’m glad that you ask:

[Update 5 Jul 2018]:

[Update 6 Jul 2018]:

Data Science Toolbox: How to use Julia with Tableau

Julia in Tableau: R allows Tableau to execute Julia code on the fly, enhancing your data analytics experience.
Julia in Tableau: R allows Tableau to execute Julia code on the fly, enhancing your data analytics experience.

Michael, a data scientist, who is working for a German railway and logistics company, recently told me during a FATUG Meetup that he loves Tableau’s R integration and Tableau’s Python integration. As he continued, he raised the question of using functions they have written in Julia. Julia, a high-level dynamic programming language for high-performance numerical analysis, is an integral part of the newly developed data strategy in Michael’s organization.

Tableau, however, does not come with native support for Julia. I didn’t want to keep Michael’s team down and was looking for an alternative way to integrate Julia with Tableau.

This solution is working flawlessly in a production environment for several months. In this tutorial, I’m going to walk you through the installation and connecting Tableau with R and Julia. I will also give you an example of calling a Julia statement from Tableau to calculate the sphere volume.

Step by Step: Integrating Julia in Tableau

1. Install Julia and add PATH variable

You can download Julia from julialang.org. Add Julia’s installation path to the PATH environment variable.

2. Install R, XRJulia, and RServe

You can download base R from r-project.org. Next, invoke R from the terminal to install the XRJulia and the RServe packages:

> install.packages("XRJulia")
> install.packages("Rserve")

XRJulia provides an interface from R to Julia. RServe is a TCP/IP server that allows Tableau to use facilities of R.

3. Load libraries and start RServe

After packages are successfully installed, we load them and run RServe:

> library(XRJulia)
> library(Rserve)
> Rserve()

Make sure to repeat this step every time you restart your R session.

4. Connecting Tableau to RServe

Now let’s open the Help menu in Tableau Desktop and choose Settings and Performance >Manage External Service connection to open the External Service Connection dialog box:

TC17 External Service Connection

Enter a server name using a domain or an IP address and specify a port. Port 6311 is the default port used by Rserve. Take a look at my R tutorial to learn more about Tableau’s R integration.

5. Adding Julia code to a Calculated Field

You can invoke Calculated Field functions called SCRIPT_STR, SCRIPT_REAL, SCRIPT_BOOL, and SCRIPT_INT to embed your Julia code in Tableau, such as this simple snippet that calculates sphere volume:


SCRIPT_INT('
library(XRJulia)
if (!exists("ev")) ev <- RJulia()
y <- juliaEval("
4 / 3 * %s * ' + STR([Factor]) + ' * pi ^ 3
", .arg1)
',
[Radius])

6. Use Calculated Field in Tableau

You can now use your Julia calculation as an alternate Calculated Field in your Tableau worksheet:

Using Julia within calculations in Tableau (click to enlarge)
Using Julia calculations within Tableau (click to enlarge)

Feel free to download the Tableau Packaged Workbook (twbx) here.

Further Reading: Mastering Julia

If you want to go beyond this tutorial and explore more about Julia in the context of data science, I recommend the book Mastering Julia. You can find it here.

Further Reading: Visual Analytics with Tableau

Join the data science conversation and follow me on Twitter and LinkedIn for more tips, tricks, and tutorials on Julia in Tableau and other data analytics topics. If you’re looking to master Tableau, don’t forget to preorder your copy of my upcoming book, Visual Analytics with Tableau. (Amazon). It offers an in-depth exploration of data visualization techniques and best practices.

Also, feel free to comment and share my Tableau Julia Tutorial tweet:

Social Media and the Customer-centric Data Strategy #data17 #resources

Social media marketing mix
Do you analyze your social media marketing mix? | Photo Credit: via Richard Goodwin

With over 3 billion active social media users, establishing an active presence on social media networks is becoming increasingly essential in getting your business front of your ideal audience. These days, more and more consumers are looking to engage, connect and communicate with their favorite brands on social media.

Adding social media to your customer-centric data strategy will help boost brand awareness, increase followership, drive traffic to your website and generate leads for your sales funnel. In 2017, no organization should be without a plan that actively places their brand on social media, and analyzes their social media data.

Once you’ve started diving into social media analytics, how do you bring it to the next level? This session covers a customer-centric data strategy for scaling a social media data program.

Here are the links (i.e. additional resources) featured during the session to help you formulate your social media data program in order to build a stronger presence and retrieve powerful insights:

The Data Opportunity

TC17 Social Media Slides: The Data Opportunity

Focus on relevant metrics for your strategy

TC17 Social Media Slides: Sentiment Analysis

How to get Social Media in Tableau?

TC17 Social Media Slides: 3rd Party Platform Talkwalker

Tips to Level Up

TC17 Social Media Slides: Unshorten URLs in Tableau with R

Tutorials and Slide Set

The slides and tutorials presented at Tableau Conference on Tour in Berlin are also available on SlideShare, and on YouTube in English and German.

English Tutorials

German Tutorials

Slide Set

TabPy Tutorial: How to Integrate Python with Tableau for Advanced Analytics

Python in Tableau: TabPy allows Tableau to execute Python code on the fly
Python in Tableau: TabPy allows Tableau to execute Python code on the fly

In 2013, Tableau introduced R Integration, the ability to call R scripts in calculated fields. This opened up possibilities such as K-means clustering, Random Forest models, and sentiment analysis. With the release of Tableau 10.2, we can enjoy a new, fancy addition to this feature: the Python Integration through TabPy, the Tableau Python Server.

Python in Tableau: The Perfect Blend

Python is a widely used general-purpose programming language, popular among academia and industry alike. It provides a wide variety of statistical and machine-learning techniques and is highly extensible. Together, Python and Tableau are the data science dream team to cover any organization’s data analysis needs.

In this tutorial, I’m going to walk you through the installation and connecting Tableau with TabPy. I will also give you an example of calling a Python function from Tableau to calculate correlation coefficients for a trellis chart.

Step by Step: Integrating Python in Tableau

1. Install and start Python and TabPy

Start by clicking on the Clone or download button in the upper right corner of the TabPy repository page, downloading the zip file, and extracting it.

TabPy download via GitHub web page

Protip: If you are familiar with Git, you can download TabPy directly from the repository:

> git clone git://github.com/tableau/TabPy

TabPy download via Git command line interface

Within the TabPy directory, execute setup.sh (or setup.bat if you are on Windows). This script downloads and installs Python, TabPy, and all necessary dependencies. After completion, TabPy is starting up and listens on port 9004.

2. Connecting Tableau to TabPy

In Tableau 10.2 (and later versions), a connection to TabPy can be added in Help > Settings and Performance > Manage External Service Connection:

Tableau main menu
Tableau main menu

Set port to 9004:

External Service Connection dialogue
External Service Connection dialogue

3. Adding Python code to a Calculated Field

You can invoke Calculated Field functions called SCRIPT_STR, SCRIPT_REAL, SCRIPT_BOOL, and SCRIPT_INT to embed your Python script in Tableau:

SCRIPT_REAL('
import numpy as np
return np.corrcoef(_arg1,_arg2)[0,1]
',
SUM([Sales]), SUM([Profit]))
Python script within Tableau
Python script within Tableau

4. Use Calculated Field in Tableau

Now you can use your Python calculation as Calculated Field in your Tableau worksheet:

Tableau workbook featuring a Python calculation
Tableau workbook featuring a Python calculation

Feel free to download the Tableau Packaged Workbook (twbx) here.

Further Reading: Visual Analytics with Tableau

Join the data science conversation and follow me on Twitter and LinkedIn for more tips, tricks, and tutorials on Python in Tableau and other data analytics topics. If you’re looking to master Tableau, don’t forget to preorder your copy of my upcoming book, Visual Analytics with Tableau (Amazon). It offers an in-depth exploration of data visualization techniques and best practices.

Also, feel free to comment and share my TabPy Tutorial tweet:

Blog post updates:

How to enable Multi-Language Sentiment Analysis with R

Have you seen how easy it is to integrate sentiment analysis in your Tableau dashboard – if your text is in English?

Until now the sentiment package for R only worked with English text. Today, I released version 1.0 of the sentiment package on GitHub that features multi-language support. In order to perform sentiment analysis with German text, just add the parameter language="german" as shown in this example:

Demo showing Multi-Language Sentiment Analysis with English and German text
Demo showing Multi-Language Sentiment Analysis with English and German text

The new code allows you to add any language. So far, I started to prepare German sentiment files. French and Spanish sentiment files are on my to-do list.