Du bist auf der Suche nach dem besten Smartphone-Tarif? Ich kann dir aus eigener Erfahrung sagen, dass der fraenk-Tarif alle meine Erwartungen übertrifft! Mit dem fraenk VorteilscodeALEL19 bekommst du nicht nur ein unschlagbares Preis-Leistungs-Verhältnis, sondern auch extra Bonusvolumen.
76 GB Datenvolumen: Für schlanke 10€ im Monat erhältst du 10 GB Datenvolumen im Telekom-5G-Netz und kannst dieses durch die fraenk for friends-Aktion um bis zu 60 GB aufstocken.
Allnet Telefonie & SMS Flat: Anrufe und Textnachrichten sind natürlich auch inklusive.
EU-Roaming inklusive Schweiz: Surfe und telefoniere auch im Ausland ohne Zusatzkosten.
Weltweit erreichbar mit WLAN-Call: Auch international bleibst du mit deinem Smartphone in Verbindung.
Weitere Features: Kostenlose Rufnummernmitnahme, fraenk-eSIM-Option, Kundenbetreuung per Chat, Zahlung per PayPal oder Lastschrift und monatliche Kündigungsoption.
Der fraenk Vorteilscode: Dein Ticket zu noch mehr Datenvolumen
Mit der aktuellen fraenk for friends-Aktion hast du die Möglichkeit, noch mehr aus deinem Tarif herauszuholen. Für jeden geworbenen Freund erhältst du dauerhaft 4 GB zusätzlich. Als Neukunde startest du sogar mit 14 GB anstelle der üblichen 10 GB. Nutze den fraenk VorteilscodeALEL19, um dein Datenvolumen zu erhöhen.
Warum ich fraenk nutze und warum du es auch tun solltest
Ich bin seit Jahren zufriedener fraenk-Kunde und genieße die Vorteile des stabilen Telekom-Netzes, das mich noch nie im Stich gelassen hat. Du willst auch von den Vorteilen profitieren? Dann nutze den fraenk VorteilscodeALEL19 bei deiner Buchung.
fraenk Vorteilscode: Letzte Chance auf die fraenk for friends-Aktion
Die fraenk for friends-Aktion ist zeitlich begrenzt. Sichere dir also schnell deinen Tarif und nutze den CodeALEL19 für extra Bonusvolumen!
Jetzt bist du an der Reihe: Zögere nicht länger und sichere dir deinen fraenk-Tarif über die fraenk-App. Genieße sorgloses Reisen durch Europa und bleibe weltweit in Kontakt mit deinem gigantischen Datenvolumen!
Sind Sie mit der Geschwindigkeit Ihrer Datenanlyse unzufrieden? Oder haben Ihre Dashboards lange Ladezeiten? Dann können Sie bzw. Ihr Datenbank-Administrator folgenden Hinweisen nachgehen, die sich je nach Datenquelle unterscheiden können.
Allgemeine Empfehlungen zur Performance-Optimierung
Möchten Sie die Geschwindigkeit der Analyse verbessern? Dann beachten Sie folgende Punkte:
Benutzen Sie mehrere »kleinere« Datenquellen für individuelle Fragestellungen anstatt einer einzigen Datenquelle, die alle Fragestellungen abdecken soll.
Verzichten Sie auf nicht notwendige Verknüpfungen.
Aktivieren Sie in Tableau die Option »Referentielle Integrität voraussetzen« im »Daten«-Menü (siehe Abbildung 2.20). Wenn Sie diese Option verwenden, schließt Tableau die verknüpften Tabellen nur dann in die Datenabfrage ein, wenn sie explizit in der Ansicht verwendet wird*. Wenn Ihre Daten nicht über referentielle Integrität verfügen, sind die Abfrageergebnisse möglicherweise ungenau.
* So wird beispielsweise der Umsatz anstatt mit der SQL-Abfrage SELECT SUM([Sales Amount]) FROM [Sales] S INNER JOIN [Product Catalog] P ON S.ProductID = P.ProductID lediglich mit der SQL-Abfrage SELECT SUM([Sales Amount]) FROM [Sales] ermittelt.
Empfehlungen für Performance-Optimierung bei Dateien und Cloud-Diensten
Achten Sie insbesondere beim Arbeiten mit Dateiformaten, wie Excel-, PDF- oder Textdateien, oder Daten aus Cloud-Diensten wie Google Tabellen zusätzlich auf folgende Punkte:
Verzichten Sie auf Vereinigungen über viele Dateien hinweg, da deren Verarbeitung sehr zeitintensiv ist.
Stellen Sie sicher, dass Sie beim Erstellen des Extrakts die Option »Einzelne Tabelle« wählen, anstatt der Option »Mehrere Tabellen« (siehe Abbildung 2.21). Dadurch wird das erzeugte Extrakt zwar größer und das Erstellen des Extrakts dauert länger, das Abfragen hingegen wird um ein Vielfaches beschleunigt.
Empfehlungen für Performance-Optimierung bei Datenbank-Servern
Arbeiten Sie mit Daten auf einem Datenbank-Server, wie Oracle, PostgreSQL oder Microsoft SQL Server, und möchten die Zugriffszeiten verbessern? Dann achten Sie bzw. der dafür zuständige Datenbankadministrator zusätzlich auf folgende Punkte:
Definieren Sie für Ihre Datenbank-Tabellen sinnvolle Index-Spalten.
Legen Sie für Ihre Datenbank-Tabellen Partitionen an.
Nachdem Sie Ihre Daten für die Analyse optimal vorbereitet haben, stellt sich die Frage auf welche Weise Sie Ihre Daten bereithalten wollen, damit Sie schnell erste Erkenntnisse erhalten.
Tableau bietet Ihnen für die meisten Datenquellen die Möglichkeit, zwischen einer Live-Verbindung, also einer direkten Verbindung zur Datenbank, und einem Datenextrakt, also einem Abzug der Daten zu wählen. Wie Abbildung 1.1 zeigt, können Sie einfach zwischen beiden Verbindungstypen wechseln.
Live-Verbindungen ermöglichen Ihnen die Arbeit mit den Daten, wie sie zum momentanen Zeitpunkt auf der Datenbank oder der Datei vorliegen. Wenn Sie Daten extrahieren, importieren Sie einige oder alle Daten in die Data Engine von Tableau. Dies gilt sowohl für Tableau Desktop als auch für Tableau Server. Welche Verbindungsmethode Sie bevorzugen sollten, hängt von Ihrer Situation und dem Anwendungsfall, Ihren Anforderungen sowie von der Verfügbarkeit der Datenbank und der Netzwerkbeschaffenheit ab.
Immer aktuell mit der Live-Verbindung
Durch die direkte Verbindung mit Ihrer Datenquelle visualisieren Sie immer die aktuellsten Daten, die Ihnen die Datenbank zur Verfügung stellt. Wenn Ihre Datenbank in Echtzeit aktualisiert wird, müssen Sie die Tableau-Visualisierung nur über die Funktionstaste F5 aktualisieren oder indem Sie mit der rechten Maustaste auf die Datenquelle klicken und die Option Aktualisieren auswählen.
Wenn Sie eine Verbindung zu großen Datenmengen herstellen, die Visualisierung sehr viele Details enthält oder Ihre Daten in einer leistungsstarken Datenbank mit entsprechend ausgestatteter Hardware gespeichert sind, können Sie mit einer direkten Verbindung eine schnellere Antwortzeit erzielen.
Die Auswahl einer direkten Verbindung schließt nicht die Möglichkeit aus, die Daten später zu extrahieren. Andersherum können Sie auch wieder von einem Extrakt zu einer Live-Verbindung wechseln, indem Sie mit der rechten Maustaste auf die Datenquelle klicken und die Option Extrakt verwenden deaktivieren.
Unabhängig mit einem Datenextrakt
Datenextrakte haben naturgemäß nicht den Vorteil, dass sie in Echtzeit aktualisiert werden, wie es bei einer Live-Verbindung der Fall ist. Die Verwendung der Data Engine von Tableau bietet jedoch eine Reihe von Vorteilen:
Leistungsverbesserung bei langsamen Datenquellen:
Vielleicht ist Ihre Datenbank stark mit Anfragen belastet oder bereits mit transaktionalen Operationen beschäftigt. Mithilfe der Data Engine können Sie Ihre Datenbank entlasten und die Datenhaltung von Tableau übernehmen lassen. Extrakte können Sie am besten außerhalb der Stoßzeiten aktualisieren. Tableau Server kann Extrakte auch zu festgelegten Zeitpunkten aktualisieren, zum Beispiel nachts um 3 Uhr.
Inkrementelles Extrahieren:
Durch das inkrementelle Extrahieren wird auch die Aktualisierungszeit beschleunigt, da Tableau nicht die gesamte Extraktdatei aktualisiert. Es fügt nur neue Datensätze hinzu. Um inkrementelle Extrakte auszuführen, müssen Sie ein Feld angeben, das als Index verwendet werden soll. Tableau aktualisiert die Zeile nur, wenn sich der Index geändert hat. Daher müssen Sie beachten, dass Änderungen an einer Datenzeile, die das Indexfeld nicht ändert, von der Aktualisierung nicht berücksichtigt werden.
Datenmenge mit Filtern einschränken:
Eine andere Möglichkeit, Extrakte zu beschleunigen, besteht darin, beim Extrahieren der Daten Filter anzuwenden. Wenn für die Analyse nicht die gesamte Datenmenge benötigt wird, können Sie den Extrakt so filtern, dass er nur die erforderlichen Datensätze enthält. Wenn Sie eine sehr große Datenmenge haben, müssen Sie nur selten den gesamten Inhalt der Datenbank extrahieren. Zum Beispiel kann Ihre Datenbank Daten für viele Regionen enthalten, aber Sie benötigen möglicherweise nur die Daten zur Region »Süd«.
Um einen Extrakt entsprechend anzulegen, wählen Sie als Verbindung Extrakt aus und klicken dann auf das nebenstehende Bearbeiten. Es öffnet sich das Fenster Daten extrahieren. Mit einem weiteren Klick auf Hinzufügen können Sie nun einen Filter erstellen, der für Ihren Extrakt angewandt wird (siehe Abbildung 1.2).
Weitere Funktionen für bestimmte Datenquellen:
Wenn Ihre Daten aus einer bestimmten Datenquelle stammen, so sind unter anderem Aggregationsfunktion wie Median (beispielsweise bei Access-Datenbanken ) bei einer Live-Verbindung nicht verfügbar. Arbeiten Sie mit einem Extrakt, können Sie diese Funktionen nutzen, auch wenn sie von der ursprünglichen Datenquelle nicht unterstützt werden.
Datenübertragbarkeit:
Sie können Extrakte lokal speichern und auch dann verwenden, wenn die Verbindung zu Ihrer Datenquelle nicht verfügbar ist. Eine Live-Verbindung funktioniert nicht, wenn Sie nicht über ein lokales Netzwerk oder das Internet auf Ihre Datenquelle zugreifen können. Extrakte werden außerdem komprimiert und sind normalerweise wesentlich kleiner als die ursprünglichen Datenbanktabellen, was dem Weitertransport der Daten zugutekommt.
Achten Sie auf Datenschutz und Data Governance
In Unternehmen spielen Datenschutz und Data Governance und damit verbunden Integrität und Sicherheit der Daten eine wichtige Rolle. Wenn Sie Extrakte an Mitarbeiter oder Geschäftspartner verteilen, sollten Sie die etwaige Vertraulichkeit Ihrer Daten berücksichtigen. Ziehen Sie in Betracht, den Inhalt des Extrakts über Filter einzuschränken und zu sichtbaren Dimensionen zu aggregieren.
Sind Sie sich unsicher, arbeiten Sie im Zweifelsfall besser mit einer Live-Verbindung, da in diesem Fall Ihre Datenbank das Rechte-Management steuert und so Ihre Daten nicht von Personen ohne ausreichende Berechtigungen gesehen werden können.
Jedes Jahr (2015, 2016, 2017 und 2018) stelle ich Digitalisierungstrends vor, die der Finanzbranche ein großes Potenzial bieten. Dabei geht es vor allem um einen Überblick darüber, welche Trends und Technologien zukünftig eine größere Rolle spielen werden oder könnten.
Im Folgenden habe ich die fünf Digitalisierungstrends identifiziert, die für Banken und Versicherungen in Zukunft besonders spannend sein dürften:
1. Maschine Learning
Maschine Learning und Deep Learning werden im Investment Banking angewandt, um Unternehmensbewertungen schneller und zuverlässiger durchzuführen. Mehr Daten denn je können hinzugezogen werden. Eine Gewichtung der Daten erfolgt komplett autonom. Da manuelle Analyse weitgehend entfällt, werden Entscheidungsprozesse drastisch beschleunigt. Investoren, die mit konventionellen Werkzeugen arbeiten, haben das Nachsehen.
2. Künstliche Intelligenz
Durch Künstliche Intelligenz gesteuerte Chatbots vermitteln den Kunden eine menschlichen-ähnliche Betreuung. Chatbots werden darüber hinaus in existierende Cloud-basierende Assistenten, wie Alexa oder Siri, eingebunden und sind in der Lage mittels Natural Language Processing, auch komplexere Anfragen zu verstehen. Recommender-Systeme liefern maßgeschneiderte Lösungen, die speziell auf die Bedürfnisse der Kunden abgestimmt sind.
3. Internet of Things
Wearables und in Kleidung eingearbeitete Sensoren (Internet of Things, IoT) liefern ausreichend Daten, um den Lebensstil der Kunden vollständig zu vermessen. Dadurch können individuelle Raten für Versicherungen und Finanzprodukte berechnet werden. Außerdem bieten die IoT-Daten eine weitere Datenquelle für die Recommender-Systeme.
4. Blockchain
Verträge werden kostengünstig, fälschungssicher und irreversibel in der Blockchain gespeichert. Die Blockchain dienst sogenannten Smart Contracts als dezentrale Datenbank. Darüber hinaus liefern Blockchain-Implementierungen, wie Ethereum, das Ausführen von Logik, die beispielsweise monatliche Zahlungen prüfen und ggf. auch die Erfüllung von Vertragsbestandteilen (z.B. im Schadenfall) steuern.
5. Argumented Reality
Arbeitsplätze werden mit Technik ausgestattet, die Argumented Reality ermöglicht. Lösungen wie Microsoft’s Hololense ermöglichen Analysten und Händlern eine immersive und interaktive Analyse von Finanzdaten in Echtzeit. Insbesondere fällt dadurch auch die Zusammenarbeit mit Kollegen leichter, da Plattformen zur visuellen Kollaboration traditionelle Meetings weitgehend ablösen.
Welcher ist der 6. Trend?
Helfen Sie den 6. Digitalisierungstrend zu benennen? Nehmen Sie hierzu an der Twitter-Umfrage teil. Selbstverständlich freue ich mich auch über Kommentare und eine spannende Diskussion.
Digitale Banken: Welche Digitalisierungstrends bewegen die Finanzbranche 2018: https://t.co/3wvEsofy8M Welchen Trend sehen Sie noch?
Kürzlich habe ich einige Blog-Posts zum Thema Datenstrategie veröffentlicht. Für viele Unternehmen geht die Entwicklung und Einführung einer Datenstrategie nicht tief genug. Häufig habe ich ähnliches gehört: „So weit ist unser Unternehmen noch gar nicht. Wir haben noch viel operativ vorzubereiten, bevor wir eine Datenstrategie voll umfänglich etablieren können.“
Ich habe in diesen Gesprächen nachgehakt, wo diese grundlegenden Lücken in den Unternehmen bestehen, und entschlossen eine neue Blog-Post-Serie aufzusetzen, um zum Thema Data Operations (#dataops) konkrete und einfach umsetzbare Vorschläge zu geben.
Daten für die Analyse vorbereiten
Eine der wesentlichen Fragen, die sich Datenanalysten immer wieder stellen, lautet: „Gibt es eine Möglichkeit meine Daten für die Verwendung mit Analysewerkzeugen, wie Tableau, optimal vorzubereiten?“
Daten können auf unterschiedliche Arten strukturiert sein. Die meisten neuen Tableau-Anwender erliegen der Versuchung, Tableau mit einem bereits formatierten und voraggregierten Excel-Bericht (siehe Abbildung 1.1) zu verbinden und diesen in Tableau zu visualisieren. Heißt es nicht mit Tableau können Daten jeder Art einfach und intuitiv verwenden werden? Sehr schnell stellt man fest, dass ein solches Vorgehen nicht funktioniert, wie erwartet und sich so auch keine Visualisierungen erstellen lassen.
Dieses Szenario, dem viele Einsteiger begegnen, ist nicht ungewöhnlich und tatsächlich ein häufiger Stolperstein bei der Einarbeitung in Tableau, der die Analyse Ihrer Daten erschweren kann.
Die folgenden Punkte zeigen Ihnen Vorschläge zur sauberen Vorbereitung Ihrer Daten anhand des Beispielberichts:
Verzichten Sie auf den einleitenden Text („Temperaturmessung zum Monatsbeginn“).
Überführen Sie hierarchische Überschriften („Frankfurt“, „Berlin“) auf eine Spalteninformation (neue Spalte „Ort“).
Pivotisieren Sie Daten von einer „weiten“ Kreuztabelle mit Variablen in Spalten („Früh“, „Mittag“, „Abend“) in eine „lange“ Tabelle, die die Variablen stets in den Zeilen trägt (in diesem Beispiel die Uhrzeit).
Nutzen Sie vollständige Datums- und ggf. Zeitformate („01.04.2018 06:00“) anstatt z.B. nur den Monatsnamen („April“).
Überprüfen Sie, dass Zahlen im Zahlenformat und nicht im Textformat gespeichert sind.
Verzichten Sie voraggregierte Daten („Durchschnitt“, „Gesamtdurchschnitt“).
Entfernen Sie leere Zeilen.
Achten Sie darauf, dass jede Spate eine aussagekräftige Spaltenüberschrift trägt.
Haben Sie diese Vorschläge befolgt, ist aus Ihrer „weiten“ Kreuztabelle nun eine „lange“ Zeilen-basierte Tabelle geworden, und damit die perfekte Basis zur umfangreichen Datenanalyse (siehe Abbildung 1.2).
We use cookies to optimize our website and our service.
Functional
Immer aktiv
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.