IMF Global Data Explorer

How about some visual takeaways from the IMF’s World Economic Outlook? Recently I prepared two nifty data visualizations with Tableau that I like to share with you.

These visualizations allow you to explore plenty of economical data, including IMF staff estimates until 2020. Don’t forget to choose “Units” after switching “Subject” on the right-side bar. A detailed description on each subject is displayed below.


Data Science Toolbox: How to use R with Tableau

Recently Tableau released an exciting new feature: R integration via RServe. Tableau with R seems to bring my data science toolbox to the next level! In this tutorial I’m going to walk you through the installation and connecting Tableau with RServe. I will also give you an example of calling an R function with a parameter from Tableau to visualize the results in Tableau.

1. Install and start R and RServe

You can download base R from Next, invoke R from the terminal to install and run the RServe package:

> install.packages("Rserve")
> library(Rserve)
> Rserve()

To ensure RServe is running, you can try Telnet to connect to it:


Protip: If you prefer an IDE for R, I can highly recommend you to install RStudio.

2. Connecting Tableau to RServe

Now let’s open Tableau and set up the connection:

Tableau 10 Help menu

Tableau 10 External Service Connection

3. Adding R code to a Calculated Field

You can invoke R scripts in Tableau’s Calculated Fields, such as k-means clustering controlled by an interactive parameter slider:

Calculated Field in Tableau 10

4. Use Calculated Field in Tableau

You can now use your R calculation as an alternate Calculated Field in your Tableau worksheet:

Tableau 10 showing k-means clustering

Feel free to download the Tableau Packaged Workbook (twbx) here.

Further reading: Hands-On with R

[Update 26 Jun 2016]: Tableau 8.1 screenshots were updated with Tableau 10.0 (Beta) screenshots due to my upcoming Advanced Analytics session at TC16, which is going to reference back to this blog post.

Displaying Dimuon Events from the CMS Detector using D3.js

Physicists working on the CMS Detector
Physicists working on the CMS Detector

I became a Python geek and GnuPlot maniac since I joined CERN around three years ago. I have to admit, however, that I really enjoy the flexibility of D3.js, and its capability to render histograms directly in the web browser.

D3 is a JavaScript library for manipulating documents based on data. This library helps you to bring data to life leveraging HTML, CSS and SVG, and embed it in your website.

The following example loads a CSV file, which includes 10,000 dimuon events (i.e. events containing two muons) from the CMS detector, and displays the distribution of the invariant mass M (in GeV, in bins of size 0.1 GeV):

Feel free to download the sample CSV dataset here.

Further reading: D3 Cookbook