Tableau Conference TC17 Sneak Peek: Integrating Julia for Advanced Analytics

Using Julia within calculations in Tableau (click to enlarge)
Using Julia calculations within Tableau (click to enlarge)

We have already seen some love from Tableau for R and Python, boosting Tableau’s Advanced Analytics capabilities.

So what is the next big thing for our Data Science Rockstars? Julia!

Who is Julia?

JuliaJulia logo is a high-level dynamic programming language introduced in 2012. Designed to address the needs of high-performance numerical analysis its syntax is very similar to MATLAB. If you are used to MATLAB, you will be very quick to get on track with Julia.

Compared to R and Python, Julia is significantly faster (close to C and FORTRAN, see benchmark). Similar to Tableau’s R and Python integration, Julia is a fantastic addition to Tableau’s Advanced Analytics stack and to your data science toolbox.

Where can I learn more?

Do you want to learn more about Advanced Analytics and how to leverage Tableau with R, Python and Julia? Meet me at the 2017 Tableau Conferences in London, Berlin or Las Vegas and join my Advanced Analytics sessions:

Will there be an online tutorial?

Yes, of course! I published tutorials for R and Python on this blog. And I will also publish a Julia tutorial soon. Feel free to follow me on Twitter @xlth, and leave me your feedback/suggestions in the comment section below.

Further reading: Mastering Julia

A German translation of this post is published on the official Tableau blog: Tableau Conference On Tour Sneak Peek: Julia-Integration für Advanced Analytics

Enabling Multi-Language Sentiment Analysis

Have you seen how easy it is to integrate sentiment analysis in your Tableau dashboard – if your text is in English?

Until now the sentiment package for R only worked with English text. Today, I released version 1.0 of the sentiment package that features multi-language support. In order to perform sentiment analysis with German text, just add the parameter language="german" as shown in this example:

German sentiment analysis

The new code allows you to add any language. So far, I started to prepare German sentiment files. French and Spanish are coming…

R You Ready For Advanced Analytics at #data16

Tableau Conference: "What is Advanced Analytics?"
Tableau Conference: “What is Advanced Analytics?”

The main goal of Advanced Analytics is to help organizations make smarter decisions for better business outcomes.

Only a few years ago, Advanced Analytics was based almost entirely on a complex tool chain and plenty of scripting in Gnuplot, Python and R. Today, Tableau enables us to analyze our data at the speed of thought, to connect to our data sources in seconds, to add dimensions and measures on the canvas by dragging and dropping, and to get insights faster than ever before.

However, R still comes in very handy when we want to enrich Tableau’s Visual Analytics approach with advanced features that enables us to ask questions along the entire Analytics stack:

  1. Descriptive Analytics describes what happened, characterized by traditional business intelligence (BI). E.g. visualizations and dashboards to show profit per store, per product segment, or per region.

  2. Diagnostic Analytics, which is also known as Business Analytics, looks into why something is happening, and is characterized by reports to further “slice and dice” and drill-down data. It answers the questions raised by Descriptive Analytics, such as why did sales go down in a particular region.

  3. Predictive analytics determines what might happen in future (“What might happen?”), and needs larger domain expertise and tool set (i.e. Tableau + R). E.g. regression analysis, and forecasting which product segments are likely to perform better in next quarter.

  4. Prescriptive Analytics identifies the actions required in order to influence particular outcome (“What should I do?”). E.g. portfolio optimization, and recommendation engines to answer which customer segment shall be targeted next quarter to improve profitability.

  5. Semantic Analytics examines data or content to identify the meaning (“What does it mean?”), and suggests what you are looking for and provides a richer response. E.g. sentiment analysis and Latent Semantic Indexing to understand social media streams.

Do you want to learn more about Advanced Analytics and how to leverage Tableau with R? Meet me at the Tableau Conference in Munich (5-7 July) where I deliver the session “R You Ready For Advanced Analytics”.

"Analytics is essential for any competitive strategy"
“Analytics is essential for any competitive strategy” (further reading: data science + strategy)

How to implement Sentiment Analysis in Tableau using R?

Interactive sentiment analysis with Tableau 9.2
Interactive sentiment analysis with Tableau 9.2

In my previous post I highlighted Tableau’s text mining capabilities, resulting in fancy visuals such as word clouds:

Today I’d like to follow up on this and show how to implement sentiment analysis in Tableau using Tableau’s R integration. Some of the many uses of social media analytics is sentiment analysis where we evaluate whether posts on a specific issue are positive, neutral, or negative (polarity), and which emotion in predominant.

What do customers like or dislike about your products? How do people perceive your brand compared to last year?

In order to answer such questions in Tableau, we need to install an R package that is capable of performing the sentiment analysis. In the following example we use an extended version of the sentiment package, which was initiated by Timothy P. Jurka.

The sentiment package requires the tm and Rstem packages, so make sure that they are installed properly. Execute these commands in your R console to install sentiment from GitHub (see alternative way to install at the end of this blog post):

The sentiment package offers two functions, which can be easily called from calculated fields in Tableau:

Screenshot 2016-01-31 15.25.24 crop

The function get_polarity returns “positive”, “neutral”, or “negative”:

The function get_emotion returns “anger”, “disgust”, “fear”, “joy”, “sadness”, “surprise”, or “NA”:

The sentiment package follows a lexicon based approach and comes with two files emotions_english.csv.gz (source and structure) and subjectivity_english.csv.gz (source and structure). Both files contain word lists in English and are stored in the R package library under /sentiment/data directory.

If text is incorrectly classified, you could easily fix this issue by extending these two files. If your aim is to analyze text other than English, you need to create word lists for the target language. Kindly share them in the comments!

Feel free to download the Packaged Workbook (twbx) here.

[Update 11 Aug 2016]: If you are having trouble with install_github, try to install directly form this website:

How to perform Text Mining at the Speed of Thought directly in Tableau?

Interactive real-time text mining with Tableau 9.2
Interactive real-time text mining with Tableau 9.2

When I was doing text mining, I was often tempted to reach out for a scripting language like R, Python, or Ruby – and then I feed the results into Tableau. Tableau served as a communications tool to represent the insights in a pleasant way.

Wouldn’t it be handy to perform text mining and further analysis at the speed of thought directly in Tableau?

Tableau has some relatively basic text processing functions that can be used for calculated fields. This is, however, not enough to perform text mining such as sentiment analysis, where it is required to split up text in tokens. Also Tableau’s beloved R integration will not help in this case.

As a workaround, I decided to use Postgres’ built-in string functions for such text mining tasks, which perform much faster than most scripting languages. For the following word count example, I applied the function regexp_split_to_table that takes a piece of text (such as a blog post), splits it by a pattern, and returns the tokens as rows:

I joined this code snippet as a Custom SQL Query to my Tableau data source, which is connected to the database that is powering my blog:

Screenshot 2016-01-14 15.34.46

And here we go, an interactive word count visualization:


This example could be easily enhanced with data from Google Analytics, or altered to analyse user comments, survey results, or social media feeds. Do you have some more fancy ideas for real-time text mining with Tableau? Leave me a comment!

[Update 19 Jan 2016]: How to identify Twitter hashtags? Do I need another RegEx?

Another regular expression via a Custom SQL Query is not required for identifying words within tweets as hashtags. A simple calculated field in Tableau will do the job:

Looking for an example? Feel free to check out the Tweets featuring #tableau Dashboard on Tableau Public and download the Packaged Workbook (twbx):

Tweets featuring #tableau Dashboard

Any more feedback, ideas, or questions?