TabPy Tutorial: Integrating Python with Tableau for Advanced Analytics

TabPy allows Tableau to execute Python code on the fly
TabPy allows Tableau to execute Python code on the fly

In 2013 Tableau introduced the R Integration, the ability to call R scripts in calculated fields. This opened up possibilities such as K-means clustering, Random Forest models and sentiment analysis. With the release of Tableau 10.1, we can enjoy a new, fancy addition to this feature: the Python Integration through TabPy, the Tableau Python Server.

Python is a widely used general-purpose programming language, popular among academia and industry alike. It provides a wide variety of statistical and machine learning techniques, and is highly extensible. Together, Python and Tableau is the data science dream team to cover any organization’s data analysis needs.

In this tutorial I’m going to walk you through the installation and connecting Tableau with TabPy. I will also give you an example of calling a Python function from Tableau to calculate correlation coefficients for a trellis chart.

1. Install and start Python and TabPy

Download TabPy from Tableau’s GitHub repository:

> git clone git://

TabPy download via GitHub

Within the TabPy directory, execute (or setup.bat if you are on Windows). This script downloads and installs Python, TabPy and all necessary dependencies. After completion, TabPy is starting up and listens on port 9004.

2. Connecting Tableau to TabPy

In Tableau 10.1, a connection to TabPy can be added in Help > Settings and Performance > Manage External Service Connection:

Tableau Help menu

Set port to 9004:

TabPy port 9004

3. Adding Python code to a Calculated Field

You can invoke Calculated Field functions called SCRIPT_STR, SCRIPT_REAL, SCRIPT_BOOL, and SCRIPT_INT to embed your Python script in Tableau:

Python script within Tableau

4. Use Calculated Field in Tableau

Now you can use your Python calculation as Calculated Field in your Tableau worksheet:

Tableau Worksheet

Feel free to download the Tableau Packaged Workbook (twbx) here.

Translated to Japanese by Tomohiro Iwahashi: Tableau + Python 連携 (Tabpy) を使ってみよう!

Predictive Maintenance hilft Ihnen Wartungsmaßnahmen effizient zu gestalten

Predictive Maintenance zeigt verbleibende Nutzungsdauer von Aufzügen der Deutschen Bahn: klicken, um interaktives Dashboard zu öffnen

Nicht nur die Fertigungskosten lassen sich mit Predictive Maintenance senken. Auch im Dienstleistungsbereich entsteht durch Vorhersagen enormes Optimierungspotential. Im wesentlichen lassen sich die Fragestellungen, die im Rahmen von Predictive Maintenance gestellt werden, in drei Klassen einteilen:

  • Wie hoch ist die Wahrscheinlichkeit, dass ein Gerät in naher Zukunft ausfällt?
  • Was sind die Ursachen von Ausfällen und welche Instandhaltungsmaßnahmen sollten durchgeführt werden, um diese Probleme zu beheben?
  • Wie lang ist die Nutzungsdauer eines Gerätes?

Ein Beispiel, das die Frage der Nutzungsdauer in den Mittelpunkt rückt, zeigt das Dashboard Predictive Maintenance Deutsche Bahn Elevators. Dieses Dashboard sagt voraus, wie lange Aufzüge noch ohne Wartung auskommen (“Rest of Useful Life”). Mit dem Parameter “Material Wear Off” lässt sich zudem der Grad der Abnutzung beeinflussen.

Die visualisierten Sensordaten erlauben darüber hinaus die Möglichkeit Anomalien zu entdecken. Hier lassen sich mit den Parametern “Primary Sensor” und “Secondary Sensor” verschiedene Kombinationen analysieren. In der “Setting Matrix” werden die verschiedene Einstellungen, die beim Betreiben der Aufzüge angewandt werden zusammengefasst.

Details zu den Aufzügen werden im Tooltip angezeigt. In diesen Tooltips lassen sich darüber hinaus Wartungsaufträge via Twitter triggern:


Anstatt auf eine Störung zu reagieren, können Servicetechniker somit auf Vorhersagen zurückgreifen. Damit agieren sie bereits vor einem Ausfall des Aufzugs entsprechend. Techniker sind somit in der Lage einen Aufzug aus der Ferne in den Diagnosemodus zu versetzen und ihn auf einer bestimmten Etage zu parken. All dies führt zu weniger Anfahrtszeiten, gesteigerter Effizienz und geringeren Kosten.

Dieses und weitere Beispiele zeige ich auf meinem Vortrag “Industry 4.0: Self Service BI and Predictive Maintenance“ im Rahmen des IBI Symposium am 17. November 2016 in Stuttgart.

Tableau: How to find the most important variables for determining Sales

Random Forest Animation
Interactive dashboard displaying the most important variables for determining the Sales measure in Tableau 10.0 (click screenshot to enlarge)

During the Q&A session of a recent talk on Data Strategy, I was challenged with a rather technical question: I was asked how to identify the variables that are heavily influencing a certain measure – with an interactive solution that matches a modern data strategy as suggested in my presentation.

Of course, this could be done by executing a script. The result however would be static and it would be not convenient for a Business Analyst to run it over and over again. Instead of applying a script every time the data changes, it would be much more innovative to get the answer immediately with every data update or interactivity such as a changed filter.

So why not solve this with Tableau? The magic underneath this easy-to-use Tableau dashboard is a nifty R script, embedded in a calculated field. This script calls a statistical method known as Random Forest, a sophisticated machine learning technique used to rank the importance of variables as described in Leo Breiman’s original paper.

The Tableau Packaged Workbook (twbx) is available here. Do you have more ideas or use cases? Feel free to leave a comment or send me an email:

3 Essential Components to building a Data Strategy

Three core elements of a Data Strategy Plan for telecommunications industry

Does your enterprise manage data as corporate asset? Many companies don’t. Here’s how to get started with the three core elements for your Data Strategy Plan.

1. Data

The ongoing digital transformation of our environment has created an enormous amount of data about just every aspect of what we are doing. Every website we visit, every link we click, every search engine term, every purchase is recorded associated either with our online identity if we have logged in, or in a system that saves our session through cookies or digital fingerprinting.

Once gathered, data across the enterprise are typically stored in silos belonging to   business functions (vertical silos), business units (horizontal silos), or even different projects within the same division (segmented silo). Making this data a valuable and useful asset will require to break down the silos. This may not be so easy to accomplish, due to ownership issues, regulatory concerns, and governance practices.

2. Analytics

Collecting data alone does not generate value. The completeness of your Advanced Analytics stack and the complexity of the applied models determine how “smart” your insights will be and therefore how deep the level of business impact will get. Prescriptive and Semantic Analytics might be tough to implement, especially, if you need to find a way to classify semi-structured data, such as social media streams.

While you look to apply sophisticated models, you should not forget to collect the low-hanging fruits, and see if you put in all your quantitative information, such as revenue data, to scale out your diagnostic capabilities.

3. Decision-support Tools

Now you need intuitive tools that integrate data into sustainable processes and apply your analytic models to generate information that can be used for your business decisions. Depending on the stakeholder, the outcome might be presented as a self service web front end, such as a Network Performance Monitor that allows predictive maintenance, or an Executive dashboard that provides your CFO the latest numbers for upcoming M&A.

An important consideration for your decision-support tools is user acceptance. Decision-support tools should be easy to use and should not make processes more complicated. Instead, consider to add buttons that trigger actions directly from the user interface.

This content is part of the session “3 Essential Components to building a Data Strategy” that I delivered at Telekom Big Data Days 2016. Have a look on my upcoming sessions!

7 Fragen, die Unternehmen helfen ihr Ergebnis mit Social Media zu steigern

Twitter Sentiment Analysis: klicken, um interaktives Dashboard zu öffnen
Twitter Sentiment Analysis: klicken, um interaktives Dashboard zu öffnen

Ist der Einsatz sozialer Netze in Ihrem Unternehmen auf Marketing beschränkt, und lässt dadurch Chancen ungenutzt?

Noch immer schöpfen viele Unternehmen in Deutschland die Möglichkeiten von Social Media nur unzureichend aus. Die meisten Firmen nutzen Social Media lediglich als Marketinginstrument, senden zum Beispiel in Intervallen die gleichen Inhalte. Wesentlich weniger Unternehmen setzen Social Media dagegen in der externen Kommunikation, in Forschung und Entwicklung, zu Vertriebszwecken, oder im Kundenservice ein.

Nachfolgend betrachten wir die Twitter-Kommunikation von vier Social-Media-affinen Unternehmen etwas näher, und zeigen anhand sieben Fragestellungen was sie anders machen und wo die übrigen Nachholbedarf haben.

1. Wann und wie werden Tweets gesendet?

Ein Blick auf das Histogram lässt auf reichlich Interaktion schließen (Tweets und Replies), während das Weiterverbreiten von Tweets (Retweets) eher sporadisch auftritt:


2. Wie umfangreich sind die Tweets?

Wie es scheint, reitzen die meisten Tweets die von Twitter vorgesehenen 140 Zeichen aus – oder sind zumindest nahe dran:


3. An welchen Wochentagen wird getweetet?

Am Wochenende lässt die Kommunikation via Twitter nach. Die Verteilung der Emotionen bleibt dabei gleich, unterscheidet sich aber von Unternehmen zu Unternehmen:


4. Zu welcher Tageszeit wird getweetet?

Auch nachts werden weniger Tweets verfasst. Bei Lufthansa kommt es dabei recht früh zu einem Anstieg durch Pendler-Tweets, etwas später tritt dieser Effekt bei der Deutschen Bahn ein: 


5. Welche Art der Kommunikation herrscht vor?

Der hohe Anteil an Replies bei Telekom, Deutsche Bahn und Lufthansa impliziert, dass diese Unternehmen Twitter stark zum Dialog nutzen. Unter den Tweets der Deutsche Bank ist hingegen der Anteil an Retweets – insbesondere bei jenen mit Hashtag – deutlich höher, was auf einen höheren Nachrichtengehalt schließen lässt:


6. Welche User sind besonders aktiv?

Nun betrachten wir die Twitter-User, welche die entsprechend Twitter-Handles der Unternehmen besonders intensiv nutzen:


7. Welche Tweets erzeugen Aufmerksamkeit?

Diese Frage lässt sich am besten interaktiv im Dashboard (siehe auch Screenshot oben) untersuchen. Entscheidend ist bei dieser Betrachtung die Ermittlung der Emotion durch eine Sentiment-Analyse.

Je nach Emotion und Kontext ist es vor allem für das adressierte Unternehmen von Interesse rechtzeitig und angemessen zu reagieren. So lässt sich eine negative Stimmung frühzeitig relativieren, und so Schaden an der Marke abwenden. Positive Nachrichten können hingegen durch Weiterreichen als Multiplikator dienen.