Einführung: Warum ist Predictive Maintenance wichtig?
Instandhaltungskosten tragen wesentlich zu den Produktionskosten bei, wobei sie je nach Branche auf 15 bis 60 Prozent der Gesamtkosten geschätzt werden. Predictive Maintenance (PdM), die vorausschauende Instandhaltung, hat das Potenzial, diese Kosten deutlich zu senken.
Unsere Erfahrungen und die ausführlichen Beispiele in meinem Buch zur Digitalisierung Decisively Digital: From Creating a Culture to Designing Strategy (Amazon) zeigen, dass Predictive Maintenance die Gesamtkosten einer Maschine während ihrer gesamten Lebensdauer reduzieren kann.
KI für Content Creation
Entdecken Sie das neue KI-Buch zu ChatGPT, DALL·E, MidJourney & Co.
Amazon Mehr erfahrenDas Prinzip von Predictive Maintenance
Predictive Maintenance zielt darauf ab, den Ausfall einer Maschine vorherzusagen und somit die Wartung zu optimieren. Die Wartungsarbeiten erfolgen nur dann, wenn ein Ausfall voraussichtlich eintreten wird. Doch wie lässt sich diese Vorhersage treffen?
Jene Vorhersagen, die häufig im Kontext mit Industrie 4.0 gesehen werden, lassen sich auf Grundlage folgender Fakten treffen:
- Aktuelle Sensordaten: Wie verhält sich die Maschine gegenwärtig?
- Historische Sensordaten: Wie hat sich die Maschine in der Vergangenheit verhalten?
- Benachbarte Sensordaten: Wie haben sich andere, ähnliche Maschinen verhalten?
- Instandhaltungsprotokoll: Wann wurde die Maschine zuletzt gewartet oder getauscht?
- Instandhaltungsempfehlung: Welche Wartungsintervalle empfiehlt der Hersteller?
Methoden zur Interpretation von IoT-Daten
Solche Daten aus dem Internet der Dinge (IoT) lassen sich nun nicht ohne weiteres sinnvoll auf einem Dashboard darstellen. Ein Blick auf die bloßen Daten lässt hier kaum Schlüsse zu. So ist es für erfolgreiches Predictive Maintenance essentiell, dass statistische Methoden wie diese angewandt werden:
1. Mustererkennung: Durch das Identifizieren von Mustern zwischen bestimmten Ereignissen und Maschinenausfällen können wir voraussagen, wann und warum eine Maschine ausfallen könnte. Zum Beispiel könnte eine Maschine, die bei der Verarbeitung eines bestimmten Materials besonders belastet wird, eher ausfallen.
2. Trendmodell: Ein Trendmodell gibt den zeitlichen Verlauf der Maschinenperformance bis zu einem Ausfall wieder. Dies kann durch verschiedene Regressionsansätze modelliert und in drei Komponenten unterteilt werden: Trend, Saison und Rauschen.
3. Ereigniszeitanalyse: Die Analyse historischer Daten zu Ausfällen liefert ein weiteres Modell, das gegen aktuelle Messdaten gelegt werden kann, um damit die Dauer bis zum nächsten Ausfall bestimmen zu können.
4. Kritische Schwellwerte: Eine Überprüfung, ob bestimmte Schwellenwerte überschritten wurden, kann ebenfalls Hinweise auf einen bevorstehenden Ausfall geben. Diese Schwellenwerte können initial von Experten festgelegt und später durch maschinelles Lernen angepasst werden.
Diese Methoden lassen sich zum Beispiel in Python und R implementieren. Die Resultate zeigen konkrete Handlungsempfehlungen und eignen sich somit ausgezeichnet für Dashboards, die auch auf Tablets oder Smartphones gut zur Geltung kommen und fortlaufend aktualisiert werden.
Feedback und weiterführende Literatur
Wenn Sie mehr über Predictive Maintenance und über die Anwendung von digitalen Strategien in Ihrer Organisation erfahren möchten, empfehle ich Ihnen mein Buch Decisively Digital: From Creating a Culture to Designing Strategy (Amazon).
Was sind Ihre Gedanken zu Predictive Maintenance? Welche Daten und Methoden nutzen Sie für Ihre Instandhaltungsstrategie? Ich freue mich auf Kommentare und Anregungen. Teilen Sie uns Ihre Erfahrungen und Vorschläge in den Kommentaren mit:
Update: Predictive Maintenance mit Tableau wird außerdem auf der CeBIT am Stand der Deutschen Telekom im Rahmen von „Echtzeit-Analysen von Maschinendaten und externen Datenquellen“ vorgestellt:
Transparenz: In diesem Blog gibt es Partnerlinks. Wenn ihr darauf klickt, werdet ihr direkt zum Anbieter weitergeleitet. Entscheidet ihr euch dort für einen Kauf, erhalten wir eine kleine Provision. Für euch ändert sich der Preis nicht. Partnerlinks haben keinen Einfluss auf unsere Berichterstattung.